LESS: Selecting Influential Data for Targeted Instruction Tuning
- URL: http://arxiv.org/abs/2402.04333v3
- Date: Thu, 13 Jun 2024 03:42:02 GMT
- Title: LESS: Selecting Influential Data for Targeted Instruction Tuning
- Authors: Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, Danqi Chen,
- Abstract summary: We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
- Score: 64.78894228923619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has unlocked powerful capabilities in large language models (LLMs), effectively using combined datasets to develop generalpurpose chatbots. However, real-world applications often require a specialized suite of skills (e.g., reasoning). The challenge lies in identifying the most relevant data from these extensive datasets to effectively develop specific capabilities, a setting we frame as targeted instruction tuning. We propose LESS, an optimizer-aware and practically efficient algorithm to effectively estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection. Crucially, LESS adapts existing influence formulations to work with the Adam optimizer and variable-length instruction data. LESS first constructs a highly reusable and transferable gradient datastore with low-dimensional gradient features and then selects examples based on their similarity to few-shot examples embodying a specific capability. Experiments show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks. Furthermore, the selected data is highly transferable: smaller models can be leveraged to select useful data for larger models and models from different families. Our qualitative analysis shows that our method goes beyond surface form cues to identify data that exemplifies the necessary reasoning skills for the intended downstream application.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - TAGCOS: Task-agnostic Gradient Clustered Coreset Selection for Instruction Tuning Data [29.45013725650798]
It is essential to extract a subset of instruction datasets that achieves comparable performance to the full dataset.
We propose Task-Agnostic Gradient Clustered COreset Selection (TAGCOS)
Specifically, we leverage sample gradients as the data representations, perform clustering to group similar data, and apply an efficient greedy algorithm for coreset selection.
arXiv Detail & Related papers (2024-07-21T17:59:20Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Exploring the Mystery of Influential Data for Mathematical Reasoning [127.61978092016228]
We propose a Quality-aware Diverse Selection (QaDS) strategy for mathematical reasoning.
A comparison with other selection strategies validates the superiority of QaDS.
With OpenMathMix, we achieve a state-of-the-art 48.8% accuracy on MATH with 7B base model.
arXiv Detail & Related papers (2024-04-01T12:01:06Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.