PQMass: Probabilistic Assessment of the Quality of Generative Models
using Probability Mass Estimation
- URL: http://arxiv.org/abs/2402.04355v1
- Date: Tue, 6 Feb 2024 19:39:26 GMT
- Title: PQMass: Probabilistic Assessment of the Quality of Generative Models
using Probability Mass Estimation
- Authors: Pablo Lemos, Sammy Sharief, Nikolay Malkin, Laurence
Perreault-Levasseur, Yashar Hezaveh
- Abstract summary: We propose a comprehensive sample-based method for assessing the quality of generative models.
The proposed approach enables the estimation of the probability that two sets of samples are drawn from the same distribution.
- Score: 8.527898482146103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a comprehensive sample-based method for assessing the quality of
generative models. The proposed approach enables the estimation of the
probability that two sets of samples are drawn from the same distribution,
providing a statistically rigorous method for assessing the performance of a
single generative model or the comparison of multiple competing models trained
on the same dataset. This comparison can be conducted by dividing the space
into non-overlapping regions and comparing the number of data samples in each
region. The method only requires samples from the generative model and the test
data. It is capable of functioning directly on high-dimensional data, obviating
the need for dimensionality reduction. Significantly, the proposed method does
not depend on assumptions regarding the density of the true distribution, and
it does not rely on training or fitting any auxiliary models. Instead, it
focuses on approximating the integral of the density (probability mass) across
various sub-regions within the data space.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution of data.
In this paper we propose the mono-variate approximation of the density using quasi-interpolation.
The presented algorithm is validated on artificial and real datasets.
arXiv Detail & Related papers (2024-02-18T11:49:38Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - BRIO: Bringing Order to Abstractive Summarization [107.97378285293507]
We propose a novel training paradigm which assumes a non-deterministic distribution.
Our method achieves a new state-of-the-art result on the CNN/DailyMail (47.78 ROUGE-1) and XSum (49.07 ROUGE-1) datasets.
arXiv Detail & Related papers (2022-03-31T05:19:38Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - The UU-test for Statistical Modeling of Unimodal Data [0.20305676256390928]
We propose a technique called UU-test (Unimodal Uniform test) to decide on the unimodality of a one-dimensional dataset.
A unique feature of this approach is that in the case of unimodality, it also provides a statistical model of the data in the form of a Uniform Mixture Model.
arXiv Detail & Related papers (2020-08-28T08:34:28Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.