DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton
- URL: http://arxiv.org/abs/2402.04411v2
- Date: Mon, 3 Jun 2024 01:40:46 GMT
- Title: DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton
- Authors: Yiyou Sun, Junjie Hu, Wei Cheng, Haifeng Chen,
- Abstract summary: This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG)
DFA-RAG is a framework designed to enhance the capabilities of conversational agents using large language models (LLMs)
- Score: 44.26173742405563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach acts as a semantic router which enables the LLM to adhere to a deterministic response pathway. The routing is achieved by the retrieval-augmentation generation (RAG) strategy, which carefully selects dialogue examples aligned with the current conversational context. The advantages of DFA-RAG include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-RAG's effectiveness, indicating its potential as a valuable contribution to the conversational agent.
Related papers
- Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAG is an autonomous iterative retrieval model centered on the reasoning capabilities of Large Language Models (LLMs)
We develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval.
Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability.
arXiv Detail & Related papers (2024-11-29T03:01:05Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
Action-Based Contrastive Self-Training allows for sample-efficient dialogue policy learning in multi-turn conversation.
ACT demonstrates substantial conversation modeling improvements over standard approaches to supervised fine-tuning and DPO.
arXiv Detail & Related papers (2024-05-31T22:44:48Z) - When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm [43.2625101868969]
This paper summarizes the prompt words for large language models (LLMs)
It then proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts.
The framework involves automated prompt generation and consideration of emotion-stimulus factors.
arXiv Detail & Related papers (2024-04-16T12:19:08Z) - AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents [74.17623527375241]
We introduce a novel framework, called AutoGuide, which automatically generates context-aware guidelines from offline experiences.
As a result, our guidelines facilitate the provision of relevant knowledge for the agent's current decision-making process.
Our evaluation demonstrates that AutoGuide significantly outperforms competitive baselines in complex benchmark domains.
arXiv Detail & Related papers (2024-03-13T22:06:03Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
This work focuses on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues.
To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme.
arXiv Detail & Related papers (2023-05-23T02:49:35Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.