FaithLM: Towards Faithful Explanations for Large Language Models
- URL: http://arxiv.org/abs/2402.04678v3
- Date: Wed, 26 Jun 2024 07:43:11 GMT
- Title: FaithLM: Towards Faithful Explanations for Large Language Models
- Authors: Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Ruixiang Tang, Shaochen Zhong, Fan Yang, Mengnan Du, Xuanting Cai, Xia Hu,
- Abstract summary: Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
- Score: 67.29893340289779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations.
Related papers
- Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving [13.485604499678262]
This paper investigates the verification and refinement of natural language explanations through the integration of Large Language Models (LLMs) and Theorem Provers (TPs)
We present a neuro-symbolic framework, named Explanation-Refiner, that integrates TPs with LLMs to generate and formalise explanatory sentences.
In turn, the TP is employed to provide formal guarantees on the logical validity of the explanations and to generate feedback for subsequent improvements.
arXiv Detail & Related papers (2024-05-02T15:20:01Z) - Can LLMs Produce Faithful Explanations For Fact-checking? Towards
Faithful Explainable Fact-Checking via Multi-Agent Debate [75.10515686215177]
Large Language Models (LLMs) excel in text generation, but their capability for producing faithful explanations in fact-checking remains underexamined.
We propose the Multi-Agent Debate Refinement (MADR) framework, leveraging multiple LLMs as agents with diverse roles.
MADR ensures that the final explanation undergoes rigorous validation, significantly reducing the likelihood of unfaithful elements and aligning closely with the provided evidence.
arXiv Detail & Related papers (2024-02-12T04:32:33Z) - Faithfulness vs. Plausibility: On the (Un)Reliability of Explanations from Large Language Models [26.11408084129897]
Large Language Models (LLMs) are deployed as powerful tools for several natural language processing (NLP) applications.
Recent works show that modern LLMs can generate self-explanations (SEs), which elicit their intermediate reasoning steps for explaining their behavior.
We discuss the dichotomy between faithfulness and plausibility in SEs generated by LLMs.
arXiv Detail & Related papers (2024-02-07T06:32:50Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - XplainLLM: A QA Explanation Dataset for Understanding LLM
Decision-Making [13.928951741632815]
Large Language Models (LLMs) have recently made impressive strides in natural language understanding tasks.
In this paper, we look into bringing some transparency to this process by introducing a new explanation dataset.
Our dataset includes 12,102 question-answer-explanation (QAE) triples.
arXiv Detail & Related papers (2023-11-15T00:34:28Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - LMExplainer: Grounding Knowledge and Explaining Language Models [37.578973458651944]
Language models (LMs) like GPT-4 are important in AI applications, but their opaque decision-making process reduces user trust, especially in safety-critical areas.
We introduce LMExplainer, a novel knowledge-grounded explainer that clarifies the reasoning process of LMs through intuitive, human-understandable explanations.
arXiv Detail & Related papers (2023-03-29T08:59:44Z) - Explanations from Large Language Models Make Small Reasoners Better [61.991772773700006]
We show that our method can consistently and significantly outperform finetuning baselines across different settings.
As a side benefit, human evaluation shows that our method can generate high-quality explanations to justify its predictions.
arXiv Detail & Related papers (2022-10-13T04:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.