PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
- URL: http://arxiv.org/abs/2402.04838v5
- Date: Thu, 21 Nov 2024 06:52:02 GMT
- Title: PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
- Authors: Jinghui Lu, Ziwei Yang, Yanjie Wang, Xuejing Liu, Brian Mac Namee, Can Huang,
- Abstract summary: PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency.
Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese.
- Score: 15.204703947024242
- License:
- Abstract: In this study, we aim to reduce generation latency for Named Entity Recognition (NER) with Large Language Models (LLMs). The main cause of high latency in LLMs is the sequential decoding process, which autoregressively generates all labels and mentions for NER, significantly increase the sequence length. To this end, we introduce Parallel Decoding in LLM for NE} (PaDeLLM-NER), a approach that integrates seamlessly into existing generative model frameworks without necessitating additional modules or architectural modifications. PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency. Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese. Simultaneously it maintains the quality of predictions as evidenced by the performance that is on par with the state-of-the-art across various datasets.
Related papers
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST) is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources.
NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks.
In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
arXiv Detail & Related papers (2024-05-29T17:55:03Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding [2.642212767247493]
We introduce Adaptive N-gram Parallel Decoding (ANPD), which accelerates inference by allowing the simultaneous generation of multiple tokens.
ANPD preserves the integrity of the original output while enhancing processing speed.
In experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x.
arXiv Detail & Related papers (2024-04-10T16:11:09Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.
The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters.
We propose textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)
arXiv Detail & Related papers (2024-02-19T03:39:10Z) - LightCAM: A Fast and Light Implementation of Context-Aware Masking based
D-TDNN for Speaker Verification [3.3800597813242628]
Traditional Time Delay Neural Networks (TDNN) have achieved state-of-the-art performance at the cost of high computational complexity and slower inference speed.
We propose a fast and lightweight model, LightCAM, which further adopts a depthwise separable convolution module (DSM) and uses multi-scale feature aggregation (MFA) for feature fusion.
arXiv Detail & Related papers (2024-02-08T21:47:16Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoT is a model-agnostic framework based on parallel decoding.
We show that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach.
arXiv Detail & Related papers (2023-11-14T15:56:18Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
We propose SPEED, which improves inference efficiency by speculatively executing multiple future tokens in parallel with the current token.
For Transformer decoders that employ parameter sharing, the memory operations for the tokens executing in parallel can be amortized.
We demonstrate the efficiency of our method in terms of latency reduction relative to model accuracy and demonstrate how speculation allows for training deeper decoders with parameter sharing with minimal runtime overhead.
arXiv Detail & Related papers (2023-10-18T16:07:01Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMA is an accelerator to speed up Large Language Model (LLM) inference with references.
It is motivated by the observation that there are abundant identical text spans between the decoding result by an LLM and the reference that is available in many real world scenarios.
arXiv Detail & Related papers (2023-04-10T09:55:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.