Reconfidencing LLMs from the Grouping Loss Perspective
- URL: http://arxiv.org/abs/2402.04957v3
- Date: Wed, 23 Oct 2024 15:08:57 GMT
- Title: Reconfidencing LLMs from the Grouping Loss Perspective
- Authors: Lihu Chen, Alexandre Perez-Lebel, Fabian M. Suchanek, Gaƫl Varoquaux,
- Abstract summary: Large Language Models (LLMs) are susceptible to generating hallucinated answers in a confident tone.
Recent findings show that controlling uncertainty must go beyond calibration.
We construct a new evaluation dataset derived from a knowledge base to assess confidence scores given to answers of Mistral and LLaMA.
- Score: 56.801251926946485
- License:
- Abstract: Large Language Models (LLMs), including ChatGPT and LLaMA, are susceptible to generating hallucinated answers in a confident tone. While efforts to elicit and calibrate confidence scores have proven useful, recent findings show that controlling uncertainty must go beyond calibration: predicted scores may deviate significantly from the actual posterior probabilities due to the impact of grouping loss. In this work, we construct a new evaluation dataset derived from a knowledge base to assess confidence scores given to answers of Mistral and LLaMA. Experiments show that they tend to be overconfident. Further, we show that they are more overconfident on some answers than others, \emph{eg} depending on the nationality of the person in the query. In uncertainty-quantification theory, this is grouping loss. To address this, we propose a solution to reconfidence LLMs, canceling not only calibration but also grouping loss. The LLMs, after the reconfidencing process, indicate improved confidence alignment with the accuracy of their responses.
Related papers
- Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
We propose a Fact-Level framework that calibrates confidence to relevance-weighted correctness at the fact level.
We also develop Confidence-Guided Fact-level Self-Correction ($textbfConFix$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones.
arXiv Detail & Related papers (2024-11-20T14:15:18Z) - Learning to Route with Confidence Tokens [43.63392143501436]
We study the extent to which large language models can reliably indicate confidence in their answers.
We propose Self-REF, a lightweight training strategy to teach LLMs to express confidence in a reliable manner.
Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.
arXiv Detail & Related papers (2024-10-17T07:28:18Z) - LACIE: Listener-Aware Finetuning for Confidence Calibration in Large Language Models [69.68379406317682]
We introduce a listener-aware finetuning method (LACIE) to calibrate implicit and explicit confidence markers.
We show that LACIE models the listener, considering not only whether an answer is right, but whether it will be accepted by a listener.
We find that training with LACIE results in 47% fewer incorrect answers being accepted while maintaining the same level of acceptance for correct answers.
arXiv Detail & Related papers (2024-05-31T17:16:38Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelf is a training framework that teaches large language models to express more accurate fine-grained confidence estimates.
In addition, SaySelf directs LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge.
We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration.
arXiv Detail & Related papers (2024-05-31T16:21:16Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
We propose Fact-and-Reflection (FaR) prompting, which improves the LLM calibration in two steps.
Experiments show that FaR achieves significantly better calibration; it lowers the Expected Error by 23.5%.
FaR even elicits the capability of verbally expressing concerns in less confident scenarios.
arXiv Detail & Related papers (2024-02-27T01:37:23Z) - Quantifying Uncertainty in Answers from any Language Model and Enhancing
their Trustworthiness [16.35655151252159]
We introduce BSDetector, a method for detecting bad and speculative answers from a pretrained Large Language Model.
Our uncertainty quantification technique works for any LLM accessible only via a black-box API.
arXiv Detail & Related papers (2023-08-30T17:53:25Z) - Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
Scores from Language Models Fine-Tuned with Human Feedback [91.22679548111127]
A trustworthy real-world prediction system should produce well-calibrated confidence scores.
We show that verbalized confidences emitted as output tokens are typically better-calibrated than the model's conditional probabilities.
arXiv Detail & Related papers (2023-05-24T10:12:33Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
Proper scoring rule theory shows that given the calibration loss, the missing piece to characterize individual errors is the grouping loss.
We show that modern neural network architectures in vision and NLP exhibit grouping loss, notably in distribution shifts settings.
arXiv Detail & Related papers (2022-10-28T07:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.