Large Language Model for Table Processing: A Survey
- URL: http://arxiv.org/abs/2402.05121v3
- Date: Thu, 24 Oct 2024 07:26:36 GMT
- Title: Large Language Model for Table Processing: A Survey
- Authors: Weizheng Lu, Jing Zhang, Ju Fan, Zihao Fu, Yueguo Chen, Xiaoyong Du,
- Abstract summary: This survey provides a comprehensive overview of table-related tasks.
It covers traditional tasks like table question answering as well as emerging fields such as spreadsheet manipulation and table data analysis.
- Score: 18.32332372134988
- License:
- Abstract: Tables, typically two-dimensional and structured to store large amounts of data, are essential in daily activities like database queries, spreadsheet manipulations, web table question answering, and image table information extraction. Automating these table-centric tasks with Large Language Models (LLMs) or Visual Language Models (VLMs) offers significant public benefits, garnering interest from academia and industry. This survey provides a comprehensive overview of table-related tasks, examining both user scenarios and technical aspects. It covers traditional tasks like table question answering as well as emerging fields such as spreadsheet manipulation and table data analysis. We summarize the training techniques for LLMs and VLMs tailored for table processing. Additionally, we discuss prompt engineering, particularly the use of LLM-powered agents, for various table-related tasks. Finally, we highlight several challenges, including diverse user input when serving and slow thinking using chain-of-thought.
Related papers
- Multimodal Table Understanding [26.652797853893233]
How to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications.
We propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests.
We develop Table-LLaVA, a generalist multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks.
arXiv Detail & Related papers (2024-06-12T11:27:03Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy [81.76462101465354]
We present a novel large vision-hugging model, TabPedia, equipped with a concept synergy mechanism.
This unified framework allows TabPedia to seamlessly integrate VTU tasks, such as table detection, table structure recognition, table querying, and table question answering.
To better evaluate the VTU task in real-world scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA.
arXiv Detail & Related papers (2024-06-03T13:54:05Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
Real-world queries are complex in nature, often over multiple tables in a relational database or web page.
Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers.
arXiv Detail & Related papers (2023-05-22T08:25:15Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
We develop a simple table-based QA model with minimal annotation effort.
We propose an omnivorous pretraining approach that consumes both natural and synthetic data.
arXiv Detail & Related papers (2022-07-08T01:23:45Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - Table Pre-training: A Survey on Model Architectures, Pretraining
Objectives, and Downstream Tasks [37.35651138851127]
A flurry of table pre-training frameworks have been proposed following the success of text and images.
Table pre-training usually takes the form of table-text joint pre-training.
This survey aims to provide a comprehensive review of different model designs, pre-training objectives, and downstream tasks for table pre-training.
arXiv Detail & Related papers (2022-01-24T15:22:24Z) - TURL: Table Understanding through Representation Learning [29.6016859927782]
TURL is a novel framework that introduces the pre-training/finetuning paradigm to relational Web tables.
During pre-training, our framework learns deep contextualized representations on relational tables in an unsupervised manner.
We show that TURL generalizes well to all tasks and substantially outperforms existing methods in almost all instances.
arXiv Detail & Related papers (2020-06-26T05:44:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.