Principled Preferential Bayesian Optimization
- URL: http://arxiv.org/abs/2402.05367v2
- Date: Wed, 29 May 2024 14:46:51 GMT
- Title: Principled Preferential Bayesian Optimization
- Authors: Wenjie Xu, Wenbin Wang, Yuning Jiang, Bratislav Svetozarevic, Colin N. Jones,
- Abstract summary: We study the problem of preferential Bayesian optimization (BO)
We aim to optimize a black-box function with only preference feedback over a pair of candidate solutions.
An optimistic algorithm with an efficient computational method is then developed to solve the problem.
- Score: 22.269732173306192
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the problem of preferential Bayesian optimization (BO), where we aim to optimize a black-box function with only preference feedback over a pair of candidate solutions. Inspired by the likelihood ratio idea, we construct a confidence set of the black-box function using only the preference feedback. An optimistic algorithm with an efficient computational method is then developed to solve the problem, which enjoys an information-theoretic bound on the total cumulative regret, a first-of-its-kind for preferential BO. This bound further allows us to design a scheme to report an estimated best solution, with a guaranteed convergence rate. Experimental results on sampled instances from Gaussian processes, standard test functions, and a thermal comfort optimization problem all show that our method stably achieves better or competitive performance as compared to the existing state-of-the-art heuristics, which, however, do not have theoretical guarantees on regret bounds or convergence.
Related papers
- Bayesian Optimization of Expensive Nested Grey-Box Functions [11.523746174066702]
We consider the problem of optimizing a grey-box objective function composed of both black-box and white-box functions.
A general formulation for such grey-box problems is given, which covers the existing grey-box optimization formulations as special cases.
We then design an optimism-driven algorithm to solve it.
arXiv Detail & Related papers (2023-06-08T12:18:18Z) - No-Regret Constrained Bayesian Optimization of Noisy and Expensive
Hybrid Models using Differentiable Quantile Function Approximations [0.0]
Constrained Upper Quantile Bound (CUQB) is a conceptually simple, deterministic approach that avoids constraint approximations.
We show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases.
arXiv Detail & Related papers (2023-05-05T19:57:36Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - A unified surrogate-based scheme for black-box and preference-based
optimization [2.561649173827544]
We show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches.
We propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework.
arXiv Detail & Related papers (2022-02-03T08:47:54Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.