Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts
- URL: http://arxiv.org/abs/2402.05382v1
- Date: Thu, 8 Feb 2024 03:46:32 GMT
- Title: Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts
- Authors: Zhili Liu, Kai Chen, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo Li,
James T. Kwok
- Abstract summary: Masked Autoencoder(MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training.
We propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE)
MoCE trains each expert only with semantically relevant images by using cluster-conditional gates.
- Score: 104.9871176044644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Masked Autoencoder~(MAE) is a prevailing self-supervised learning method that
achieves promising results in model pre-training. However, when the various
downstream tasks have data distributions different from the pre-training data,
the semantically irrelevant pre-training information might result in negative
transfer, impeding MAE's scalability. To address this issue, we propose a novel
MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE),
which can be trained once but provides customized pre-training models for
diverse downstream tasks. Different from the mixture of experts (MoE), our MoCE
trains each expert only with semantically relevant images by using
cluster-conditional gates. Thus, each downstream task can be allocated to its
customized model pre-trained with data most similar to the downstream data.
Experiments on a collection of 11 downstream tasks show that MoCE outperforms
the vanilla MAE by 2.45\% on average. It also obtains new state-of-the-art
self-supervised learning results on detection and segmentation.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts [20.202031878825153]
We propose a novel dynamic data mixture for MoE instruction tuning.
Inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets.
Results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge & reasoning tasks and open-ended queries.
arXiv Detail & Related papers (2024-06-17T06:47:03Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks.
We propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task.
arXiv Detail & Related papers (2023-09-05T17:57:31Z) - SEPT: Towards Scalable and Efficient Visual Pre-Training [11.345844145289524]
Self-supervised pre-training has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance.
We build a task-specific self-supervised pre-training framework based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains.
arXiv Detail & Related papers (2022-12-11T11:02:11Z) - Continual Learning with Optimal Transport based Mixture Model [17.398605698033656]
We propose an online mixture model learning approach based on nice properties of the mature optimal transport theory (OT-MM)
Our proposed method can significantly outperform the current state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-30T06:40:29Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDP is a simple and scalable self-supervised pretraining method for reinforcement learning and behavioral cloning.
We find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching.
arXiv Detail & Related papers (2022-11-23T07:04:41Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Lightweight Conditional Model Extrapolation for Streaming Data under
Class-Prior Shift [27.806085423595334]
We introduce LIMES, a new method for learning with non-stationary streaming data.
We learn a single set of model parameters from which a specific classifier for any specific data distribution is derived.
Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches.
arXiv Detail & Related papers (2022-06-10T15:19:52Z) - Task-Customized Self-Supervised Pre-training with Scalable Dynamic
Routing [76.78772372631623]
A common practice for self-supervised pre-training is to use as much data as possible.
For a specific downstream task, however, involving irrelevant data in pre-training may degenerate the downstream performance.
It is burdensome and infeasible to use different downstream-task-customized datasets in pre-training for different tasks.
arXiv Detail & Related papers (2022-05-26T10:49:43Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.