MTSA-SNN: A Multi-modal Time Series Analysis Model Based on Spiking
Neural Network
- URL: http://arxiv.org/abs/2402.05423v2
- Date: Mon, 4 Mar 2024 05:45:20 GMT
- Title: MTSA-SNN: A Multi-modal Time Series Analysis Model Based on Spiking
Neural Network
- Authors: Chengzhi Liu, Zheng Tao, Zihong Luo, Chenghao Liu
- Abstract summary: We propose a Multi-modal Time Series Analysis Model Based on Spiking Neural Network (MTSA-SNN)
The Pulse unifies the encoding of temporal images and sequential information in a common pulse-based representation.
We incorporate wavelet transform operations to enhance the model's ability to analyze and evaluate temporal information.
- Score: 23.303230721723278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series analysis and modelling constitute a crucial research area.
Traditional artificial neural networks struggle with complex, non-stationary
time series data due to high computational complexity, limited ability to
capture temporal information, and difficulty in handling event-driven data. To
address these challenges, we propose a Multi-modal Time Series Analysis Model
Based on Spiking Neural Network (MTSA-SNN). The Pulse Encoder unifies the
encoding of temporal images and sequential information in a common pulse-based
representation. The Joint Learning Module employs a joint learning function and
weight allocation mechanism to fuse information from multi-modal pulse signals
complementary. Additionally, we incorporate wavelet transform operations to
enhance the model's ability to analyze and evaluate temporal information.
Experimental results demonstrate that our method achieved superior performance
on three complex time-series tasks. This work provides an effective
event-driven approach to overcome the challenges associated with analyzing
intricate temporal information. Access to the source code is available at
https://github.com/Chenngzz/MTSA-SNN}{https://github.com/Chenngzz/MTSA-SNN
Related papers
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the
Response of Complex Dynamical Systems to Length-Variant Multiple Input
Functions [6.75867828529733]
Multiple-input deep neural operators (MIONet) extended DeepONet to allow multiple input functions in different Banach spaces.
MIONet offers flexibility in training dataset grid spacing, without constraints on output location.
This work redesigns MIONet, integrating Long Short Term Memory (LSTM) to learn neural operators from time-dependent data.
arXiv Detail & Related papers (2023-11-28T04:58:17Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Oscillatory Fourier Neural Network: A Compact and Efficient Architecture
for Sequential Processing [16.69710555668727]
We propose a novel neuron model that has cosine activation with a time varying component for sequential processing.
The proposed neuron provides an efficient building block for projecting sequential inputs into spectral domain.
Applying the proposed model to sentiment analysis on IMDB dataset reaches 89.4% test accuracy within 5 epochs.
arXiv Detail & Related papers (2021-09-14T19:08:07Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
A bio-plausible SNN model with spatial-temporal property is a complex dynamic system.
We formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity.
We propose a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights.
arXiv Detail & Related papers (2020-02-19T01:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.