Machine Learning Augmented Branch and Bound for Mixed Integer Linear
Programming
- URL: http://arxiv.org/abs/2402.05501v1
- Date: Thu, 8 Feb 2024 09:19:26 GMT
- Title: Machine Learning Augmented Branch and Bound for Mixed Integer Linear
Programming
- Authors: Lara Scavuzzo and Karen Aardal and Andrea Lodi and Neil Yorke-Smith
- Abstract summary: Mixed Linear Programming (MILP) offers a powerful modeling language for a wide range of applications.
In recent years, there has been an explosive development in the use of machine learning algorithms for enhancing all main tasks involved in the branch-and-bound algorithm.
In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency.
- Score: 11.293025183996832
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mixed Integer Linear Programming (MILP) is a pillar of mathematical
optimization that offers a powerful modeling language for a wide range of
applications. During the past decades, enormous algorithmic progress has been
made in solving MILPs, and many commercial and academic software packages
exist. Nevertheless, the availability of data, both from problem instances and
from solvers, and the desire to solve new problems and larger (real-life)
instances, trigger the need for continuing algorithmic development. MILP
solvers use branch and bound as their main component. In recent years, there
has been an explosive development in the use of machine learning algorithms for
enhancing all main tasks involved in the branch-and-bound algorithm, such as
primal heuristics, branching, cutting planes, node selection and solver
configuration decisions. This paper presents a survey of such approaches,
addressing the vision of integration of machine learning and mathematical
optimization as complementary technologies, and how this integration can
benefit MILP solving. In particular, we give detailed attention to machine
learning algorithms that automatically optimize some metric of branch-and-bound
efficiency. We also address how to represent MILPs in the context of applying
learning algorithms, MILP benchmarks and software.
Related papers
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
In a budget-limited scenario, it is crucial to carefully select an algorithm candidate and allocate a budget for training it.
We propose a novel framework in which an agent must select in the process of learning the most promising algorithm without waiting until it is fully trained.
arXiv Detail & Related papers (2024-10-10T08:09:58Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBO is a method to reinforce-learn a BBO algorithm from offline data in an end-to-end fashion.
RIBBO employs expressive sequence models to learn the optimization histories produced by multiple behavior algorithms and tasks.
Central to our method is to augment the optimization histories with textitregret-to-go tokens, which are designed to represent the performance of an algorithm based on cumulative regret over the future part of the histories.
arXiv Detail & Related papers (2024-02-27T11:32:14Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Survey From Distributed Machine Learning to Distributed Deep Learning [0.356008609689971]
Distributed machine learning has been proposed, which involves distributing the data and algorithm across several machines.
We divide these algorithms in classification and clustering (traditional machine learning), deep learning and deep reinforcement learning groups.
Based on the investigation of the mentioned algorithms, we highlighted the limitations that should be addressed in future research.
arXiv Detail & Related papers (2023-07-11T13:06:42Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Algorithmic Foundations of Empirical X-risk Minimization [51.58884973792057]
This manuscript introduces a new optimization framework machine learning and AI, named bf empirical X-risk baseline (EXM).
X-risk is a term introduced to represent a family of compositional measures or objectives.
arXiv Detail & Related papers (2022-06-01T12:22:56Z) - A Survey for Solving Mixed Integer Programming via Machine Learning [76.04988886859871]
This paper surveys the trend of machine learning to solve mixed integer (MIP) problems.
In this paper, we first introduce the formulation and preliminaries of MIP and several traditional algorithms to solve MIP.
Then, we advocate further promoting the different integration of machine learning and MIP algorithms.
arXiv Detail & Related papers (2022-03-06T05:03:37Z) - Knowledge engineering mixed-integer linear programming: constraint
typology [2.4002205752931625]
We investigate the constraint typology of mixed-integer linear programming MILP formulations.
MILP is a commonly used mathematical programming technique for modelling and solving real-life scheduling, routing, planning, resource allocation, timetabling optimization problems.
arXiv Detail & Related papers (2021-02-20T20:07:24Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
We propose a general scheduling algorithm, which is derived from the optimum scheduling for small instances solved by a satisfiability checking(SAT) solver.
Strategies for further optimization on skipping redundant computations are put forward as well, with which reductions of almost 25% and 50% of the original computations are respectively achieved.
The proposed algorithms are applicable regardless of problem sizes, as long as the number of input vectors is divisible to the number of computing units available in the architecture.
arXiv Detail & Related papers (2020-12-02T12:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.