Scalable Diffusion Models with State Space Backbone
- URL: http://arxiv.org/abs/2402.05608v3
- Date: Thu, 28 Mar 2024 08:28:44 GMT
- Title: Scalable Diffusion Models with State Space Backbone
- Authors: Zhengcong Fei, Mingyuan Fan, Changqian Yu, Junshi Huang,
- Abstract summary: Diffusion State Space Models treat all inputs including time, condition, and noisy image patches as tokens.
We analyze the scalability of DiS, gauged by the forward pass complexity in Gflops.
DiS-H/2 models in latent space achieve performance levels akin to prior diffusion models on class-conditional ImageNet benchmarks.
- Score: 33.92910068664058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a new exploration into a category of diffusion models built upon state space architecture. We endeavor to train diffusion models for image data, wherein the traditional U-Net backbone is supplanted by a state space backbone, functioning on raw patches or latent space. Given its notable efficacy in accommodating long-range dependencies, Diffusion State Space Models (DiS) are distinguished by treating all inputs including time, condition, and noisy image patches as tokens. Our assessment of DiS encompasses both unconditional and class-conditional image generation scenarios, revealing that DiS exhibits comparable, if not superior, performance to CNN-based or Transformer-based U-Net architectures of commensurate size. Furthermore, we analyze the scalability of DiS, gauged by the forward pass complexity quantified in Gflops. DiS models with higher Gflops, achieved through augmentation of depth/width or augmentation of input tokens, consistently demonstrate lower FID. In addition to demonstrating commendable scalability characteristics, DiS-H/2 models in latent space achieve performance levels akin to prior diffusion models on class-conditional ImageNet benchmarks at the resolution of 256$\times$256 and 512$\times$512, while significantly reducing the computational burden. The code and models are available at: https://github.com/feizc/DiS.
Related papers
- Exploiting Distribution Constraints for Scalable and Efficient Image Retrieval [1.6874375111244329]
State-of-the-art image retrieval systems train specific neural networks for each dataset.
Off-the-shelf foundation models fall short in achieving performance comparable to dataset-specific models.
We introduce Autoencoders with Strong Variance Constraints (AE-SVC), which significantly improves the performance of foundation models.
arXiv Detail & Related papers (2024-10-09T16:05:16Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - $\infty$-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions [58.42011190989414]
We introduce a novel conditional diffusion model in infinite dimensions, $infty$-Brush for controllable large image synthesis.
To our best knowledge, $infty$-Brush is the first conditional diffusion model in function space, that can controllably synthesize images at arbitrary resolutions of up to $4096times4096$ pixels.
arXiv Detail & Related papers (2024-07-20T00:04:49Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - DifFSS: Diffusion Model for Few-Shot Semantic Segmentation [24.497112957831195]
This paper presents the first work to leverage the diffusion model for FSS task, called DifFSS.
DifFSS, a novel FSS paradigm, can further improve the performance of the state-of-the-art FSS models by a large margin without modifying their network structure.
arXiv Detail & Related papers (2023-07-03T06:33:49Z) - SDM: Spatial Diffusion Model for Large Hole Image Inpainting [106.90795513361498]
We present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image.
Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion.
arXiv Detail & Related papers (2022-12-06T13:30:18Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
We reform the conv layer by resorting to the scale-space theory.
We build a novel style named SCale AttentioN Conv Neural Network (textbfSCAN-CNN)
As a single-shot scheme, the inference is more efficient than multi-shot fusion.
arXiv Detail & Related papers (2022-09-19T06:35:04Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.