Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
- URL: http://arxiv.org/abs/2402.06121v2
- Date: Wed, 26 Jun 2024 04:14:13 GMT
- Title: Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
- Authors: Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong,
- Abstract summary: Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
- Score: 109.23137009609519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant $n$-body particle systems. We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5\times$ faster, which allows it to be the first method to train using energy on the challenging $55$-particle Lennard-Jones system.
Related papers
- BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching [29.531531253864753]
We learn neural samplers given energy functions instead of data sampled from the Boltzmann distribution.
We propose a diffusion-based sampler, Noised Energy Matching, which theoretically has lower variance and more complexity.
The experimental results demonstrate that BNEM can achieve state-of-the-art performance while being more robust.
arXiv Detail & Related papers (2024-09-15T16:41:30Z) - Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models [28.596110110641327]
This paper introduces a novel sampling method that effectively combines Consistency Models (CMs) with importance sampling.
We evaluate our approach on both synthetic energy functions and equivariant n-body particle systems.
Our method produces unbiased samples using only 6-25 NFEs while achieving a comparable Effective Sample Size (ESS) to Denoising Diffusion Probabilistic Models (DDPMs) that require approximately 100 NFEs.
arXiv Detail & Related papers (2024-09-11T15:02:52Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
Efficiently sampling from un-normalized target distributions is a fundamental problem in scientific computing and machine learning.
In this paper, we propose an efficient and scalable neural implicit sampler that overcomes these limitations.
Our sampler can generate large batches of samples with low computational costs by leveraging a neural transformation that directly maps easily sampled latent vectors to target samples.
arXiv Detail & Related papers (2023-06-08T05:56:05Z) - Moment Matching Denoising Gibbs Sampling [14.75945343063504]
Energy-Based Models (EBMs) offer a versatile framework for modeling complex data distributions.
The widely-used Denoising Score Matching (DSM) method for scalable EBM training suffers from inconsistency issues.
We propose an efficient sampling framework: (pseudo)-Gibbs sampling with moment matching.
arXiv Detail & Related papers (2023-05-19T12:58:25Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.