Vertex-minor universal graphs for generating entangled quantum subsystems
- URL: http://arxiv.org/abs/2402.06260v3
- Date: Tue, 14 May 2024 13:51:51 GMT
- Title: Vertex-minor universal graphs for generating entangled quantum subsystems
- Authors: Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, Stéphan Thomassé,
- Abstract summary: We study the notion of $k$-stabilizer universal quantum state, that is, an $n$-qubit quantum state, such that it is possible to induce any stabilizer state on any $k$ qubits.
These states generalize the notion of $k$-pairable states introduced by Bravyi et al., and can be studied from a perspective using graph states and $k$-vertex-minor universal graphs.
- Score: 3.1758167940451987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the notion of $k$-stabilizer universal quantum state, that is, an $n$-qubit quantum state, such that it is possible to induce any stabilizer state on any $k$ qubits, by using only local operations and classical communications. These states generalize the notion of $k$-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and $k$-vertex-minor universal graphs. First, we demonstrate the existence of $k$-stabilizer universal graph states that are optimal in size with $n=\Theta(k^2)$ qubits. We also provide parameters for which a random graph state on $\Theta(k^2)$ qubits is $k$-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of $k$-stabilizer universal graph states on $n = O(k^4)$ qubits. Both rely upon the incidence graph of the projective plane over a finite field $\mathbb{F}_q$. This provides a major improvement over the previously known explicit construction of $k$-pairable graph states with $n = O(2^{3k})$, bringing forth a new and potentially powerful family of multipartite quantum resources.
Related papers
- Implementation of Continuous-Time Quantum Walk on Sparse Graph [0.0]
Continuous-time quantum walks (CTQWs) play a crucial role in quantum computing.
How to efficiently implement CTQWs is a challenging issue.
In this paper, we study implementation of CTQWs on sparse graphs.
arXiv Detail & Related papers (2024-08-20T05:20:55Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Small k-pairable states [0.9208007322096533]
Bravyi et al. introduced a family of $k-pairable $n$-qubit states, where $n$ grows exponentially with $k$.
We present a family of $k$-pairable $n$-qubit graph states, where $n$ is in $k$, namely $nO(k3ln3k)$.
We establish the existence of $k$-vertex-minor-universal graphs of order $O(k4 ln k)$.
arXiv Detail & Related papers (2023-09-18T17:26:27Z) - Quantum walks on blow-up graphs [0.0]
A blow-up of $n$ copies of a graph $G$ is the graph $oversetnuplusG$.
We investigate the existence of quantum state transfer on a blow-up graph $oversetnuplusG$.
arXiv Detail & Related papers (2023-08-26T14:07:25Z) - Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling [30.53587208999909]
We give a quantum algorithm for computing an $epsilon$-approximate Nash equilibrium of a zero-sum game in a $m times n$ payoff matrix with bounded entries.
Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time $widetildeO(sqrtm + ncdot epsilon-2.5 + epsilon-3)$ and outputs a classical representation of the $epsilon$-approximate Nash equilibrium.
arXiv Detail & Related papers (2023-01-10T02:56:49Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Beyond the Berry Phase: Extrinsic Geometry of Quantum States [77.34726150561087]
We show how all properties of a quantum manifold of states are fully described by a gauge-invariant Bargmann.
We show how our results have immediate applications to the modern theory of polarization.
arXiv Detail & Related papers (2022-05-30T18:01:34Z) - $n$-qubit states with maximum entanglement across all bipartitions: A
graph state approach [0.0]
We show that a subset of the 'graph states' satisfy this condition, hence providing a recipe for constructing $k$-uniform states.
Finding recipes for construction of $k$-uniform states using graph states is useful since every graph state can be constructed starting from a product state.
arXiv Detail & Related papers (2022-01-14T19:00:09Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth and size complexity remain open when ancillary qubits are available.
In this paper, we study efficient constructions of quantum circuits with $m$ ancillary qubits that can prepare $psi_vrangle$ in depth.
Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime.
arXiv Detail & Related papers (2021-08-13T09:47:11Z) - Power-like potentials: from the Bohr-Sommerfeld energies to exact ones [77.34726150561087]
Bohr-Sommerfeld Energies (BSE) extracted explicitly from the Bohr-Sommerfeld quantization condition are compared with the exact energies.
For physically important cases $m=1,4,6$ for the $100$th excited state BSE coincide with exact ones in 5-6 figures.
arXiv Detail & Related papers (2021-07-31T21:37:50Z) - Lower Bounds on Stabilizer Rank [3.265773263570237]
We prove that for a sufficiently small constant $delta, the stabilizer rank of any state which is $$-close to those states is $Omega(sqrtn/log n)$.
This is the first non-trivial lower bound for approximate stabilizer rank.
arXiv Detail & Related papers (2021-06-06T19:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.