Retrieve, Merge, Predict: Augmenting Tables with Data Lakes
- URL: http://arxiv.org/abs/2402.06282v6
- Date: Wed, 05 Feb 2025 21:58:32 GMT
- Title: Retrieve, Merge, Predict: Augmenting Tables with Data Lakes
- Authors: Riccardo Cappuzzo, Aimee Coelho, Felix Lefebvre, Paolo Papotti, Gael Varoquaux,
- Abstract summary: We present an in-depth analysis of automated table augmentation for machine learning tasks.
We analyze different methods for the three main steps: retrieving joinable tables, merging information, and predicting with the resultant table.
We use two data lakes: Open Data US, a well-referenced real data lake, and a novel semi-synthetic dataset, YADL (Yet Another Data Lake)
- Score: 7.449868392714658
- License:
- Abstract: Machine-learning from a disparate set of tables, a data lake, requires assembling features by merging and aggregating tables. Data discovery can extend autoML to data tables by automating these steps. We present an in-depth analysis of such automated table augmentation for machine learning tasks, analyzing different methods for the three main steps: retrieving joinable tables, merging information, and predicting with the resultant table. We use two data lakes: Open Data US, a well-referenced real data lake, and a novel semi-synthetic dataset, YADL (Yet Another Data Lake), which we developed as a tool for benchmarking this data discovery task. Systematic exploration on both lakes outlines 1) the importance of accurately retrieving join candidates, 2) the efficiency of simple merging methods, and 3) the resilience of tree-based learners to noisy conditions. Our experimental environment is easily reproducible and based on open data, to foster more research on feature engineering, autoML, and learning in data lakes.
Related papers
- CoddLLM: Empowering Large Language Models for Data Analytics [38.23203246023766]
Large Language Models (LLMs) have the potential to revolutionize data analytics.
We unveil a new data recipe for post-Turbo synthesiss.
We posttrain a new foundation model, named CoddLLM, based on MistralNeMo-12B.
arXiv Detail & Related papers (2025-02-01T06:03:55Z) - Leveraging Foundation Language Models (FLMs) for Automated Cohort Extraction from Large EHR Databases [50.552056536968166]
We propose and evaluate an algorithm for automating column matching on two large, popular and publicly-accessible EHR databases.
Our approach achieves a high top-three accuracy of $92%$, correctly matching $12$ out of the $13$ columns of interest, when using a small, pre-trained general purpose language model.
arXiv Detail & Related papers (2024-12-16T06:19:35Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.
TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.
Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - TabSketchFM: Sketch-based Tabular Representation Learning for Data Discovery over Data Lakes [25.169832192255956]
We present TabFM, a neural tabular model for data discovery over data lakes.
We finetune the pretrained model for identifying unionable, joinable, and subset table pairs.
Our results demonstrate significant improvements in F1 scores for search compared to state-of-the-art techniques.
arXiv Detail & Related papers (2024-06-28T17:28:53Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - Squeezing Lemons with Hammers: An Evaluation of AutoML and Tabular Deep Learning for Data-Scarce Classification Applications [2.663744975320783]
We find that L2-regularized logistic regression performs similar to state-of-the-art automated machine learning (AutoML) frameworks.
We recommend to consider logistic regression as the first choice for data-scarce applications.
arXiv Detail & Related papers (2024-05-13T11:43:38Z) - An Automatic Prompt Generation System for Tabular Data Tasks [3.117741687220381]
Large language models (LLMs) have demonstrated their ability on several tasks through carefully crafted prompts.
This paper presents an innovative auto-prompt generation system suitable for multiple LLMs, with minimal training.
arXiv Detail & Related papers (2024-05-09T08:32:55Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [51.66718740300016]
TableLLM is a robust large language model (LLM) with 8 billion parameters.
TableLLM is purpose-built for proficiently handling data manipulation tasks.
We have released the model checkpoint, source code, benchmarks, and a web application for user interaction.
arXiv Detail & Related papers (2024-03-28T11:21:12Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
We introduce an end-to-end representation approach to learn on data laid out across multiple tables.
Message Passing Graph Neural Networks can then automatically learn across the graph to extract representations that leverage all data input.
arXiv Detail & Related papers (2023-12-07T18:51:41Z) - Benchmarking Multimodal AutoML for Tabular Data with Text Fields [83.43249184357053]
We assemble 18 multimodal data tables that each contain some text fields.
Our benchmark enables researchers to evaluate their own methods for supervised learning with numeric, categorical, and text features.
arXiv Detail & Related papers (2021-11-04T09:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.