Classifying point clouds at the facade-level using geometric features
and deep learning networks
- URL: http://arxiv.org/abs/2402.06506v1
- Date: Fri, 9 Feb 2024 16:14:30 GMT
- Title: Classifying point clouds at the facade-level using geometric features
and deep learning networks
- Authors: Yue Tan, Olaf Wysocki, Ludwig Hoegner, Uwe Stilla
- Abstract summary: Classifying point clouds at facade-level is key to create such digital replicas of the real world.
We propose a method fusing geometric features with deep learning networks for point cloud classification at facade-level.
- Score: 7.272181023476306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D building models with facade details are playing an important role in many
applications now. Classifying point clouds at facade-level is key to create
such digital replicas of the real world. However, few studies have focused on
such detailed classification with deep neural networks. We propose a method
fusing geometric features with deep learning networks for point cloud
classification at facade-level. Our experiments conclude that such early-fused
features improve deep learning methods' performance. This method can be applied
for compensating deep learning networks' ability in capturing local geometric
information and promoting the advancement of semantic segmentation.
Related papers
- Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - On The Potential of The Fractal Geometry and The CNNs Ability to Encode
it [1.7311053765541484]
The fractal dimension provides a statistical index of object complexity.
Although useful in several classification tasks, the fractal dimension is under-explored in deep learning applications.
We show that training a shallow network on fractal features achieves performance comparable to that of deep networks trained on raw data.
arXiv Detail & Related papers (2024-01-07T15:22:56Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
We show that each layer of a deep linear network progressively compresses within-class features at a geometric rate and discriminates between-class features at a linear rate.
This is the first quantitative characterization of feature evolution in hierarchical representations of deep linear networks.
arXiv Detail & Related papers (2023-11-06T09:00:38Z) - Edge Aware Learning for 3D Point Cloud [8.12405696290333]
This paper proposes an innovative approach to Hierarchical Edge Aware 3D Point Cloud Learning (HEA-Net)
It seeks to address the challenges of noise in point cloud data, and improve object recognition and segmentation by focusing on edge features.
We present an innovative edge-aware learning methodology, specifically designed to enhance point cloud classification and segmentation.
arXiv Detail & Related papers (2023-09-23T20:12:32Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
We show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks.
This work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
arXiv Detail & Related papers (2023-05-11T17:19:30Z) - Localized Persistent Homologies for more Effective Deep Learning [60.78456721890412]
We introduce an approach that relies on a new filtration function to account for location during network training.
We demonstrate experimentally on 2D images of roads and 3D image stacks of neuronal processes that networks trained in this manner are better at recovering the topology of the curvilinear structures they extract.
arXiv Detail & Related papers (2021-10-12T19:28:39Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A Layer-Wise Information Reinforcement Approach to Improve Learning in
Deep Belief Networks [0.4893345190925178]
This paper proposes the Residual Deep Belief Network, which considers the information reinforcement layer-by-layer to improve the feature extraction and knowledge retaining.
Experiments conducted over three public datasets demonstrate its robustness concerning the task of binary image classification.
arXiv Detail & Related papers (2021-01-17T18:53:18Z) - Introducing Fuzzy Layers for Deep Learning [5.209583609264815]
We introduce a new layer to deep learning: the fuzzy layer.
Traditionally, the network architecture of neural networks is composed of an input layer, some combination of hidden layers, and an output layer.
We propose the introduction of fuzzy layers into the deep learning architecture to exploit the powerful aggregation properties expressed through fuzzy methodologies.
arXiv Detail & Related papers (2020-02-21T19:33:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.