Oriented-grid Encoder for 3D Implicit Representations
- URL: http://arxiv.org/abs/2402.06752v1
- Date: Fri, 9 Feb 2024 19:28:13 GMT
- Title: Oriented-grid Encoder for 3D Implicit Representations
- Authors: Arihant Gaur, G. Dias Pais and Pedro Miraldo
- Abstract summary: This paper is the first to exploit 3D characteristics in 3D geometric encoders explicitly.
Our method gets state-of-the-art results when compared to the prior techniques.
- Score: 10.02138130221506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encoding 3D points is one of the primary steps in learning-based implicit
scene representation. Using features that gather information from neighbors
with multi-resolution grids has proven to be the best geometric encoder for
this task. However, prior techniques do not exploit some characteristics of
most objects or scenes, such as surface normals and local smoothness. This
paper is the first to exploit those 3D characteristics in 3D geometric encoders
explicitly. In contrast to prior work on using multiple levels of details,
regular cube grids, and trilinear interpolation, we propose 3D-oriented grids
with a novel cylindrical volumetric interpolation for modeling local planar
invariance. In addition, we explicitly include a local feature aggregation for
feature regularization and smoothing of the cylindrical interpolation features.
We evaluate our approach on ABC, Thingi10k, ShapeNet, and Matterport3D, for
object and scene representation. Compared to the use of regular grids, our
geometric encoder is shown to converge in fewer steps and obtain sharper 3D
surfaces. When compared to the prior techniques, our method gets
state-of-the-art results.
Related papers
- Occupancy-Based Dual Contouring [12.944046673902415]
We introduce a dual contouring method that provides state-of-the-art performance for occupancy functions.
Our method is learning-free and carefully designed to maximize the use of GPU parallelization.
arXiv Detail & Related papers (2024-09-20T11:32:21Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z) - Local Implicit Grid Representations for 3D Scenes [24.331110387905962]
We introduce Local Implicit Grid Representations, a new 3D shape representation designed for scalability and generality.
We train an autoencoder to learn an embedding of local crops of 3D shapes at that size.
Then, we use the decoder as a component in a shape optimization that solves for a set of latent codes on a regular grid of overlapping crops.
arXiv Detail & Related papers (2020-03-19T18:58:13Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
We propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems.
We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques.
arXiv Detail & Related papers (2020-02-02T14:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.