Evaluating Co-Creativity using Total Information Flow
- URL: http://arxiv.org/abs/2402.06810v1
- Date: Fri, 9 Feb 2024 22:15:39 GMT
- Title: Evaluating Co-Creativity using Total Information Flow
- Authors: Vignesh Gokul, Chris Francis, Shlomo Dubnov
- Abstract summary: Co-creativity in music refers to two or more musicians or musical agents interacting with one another by composing or improvising music.
We propose a method to compute the information flow using pre-trained generative models as entropy estimators.
- Score: 6.3289703660543495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Co-creativity in music refers to two or more musicians or musical agents
interacting with one another by composing or improvising music. However, this
is a very subjective process and each musician has their own preference as to
which improvisation is better for some context. In this paper, we aim to create
a measure based on total information flow to quantitatively evaluate the
co-creativity process in music. In other words, our measure is an indication of
how "good" a creative musical process is. Our main hypothesis is that a good
musical creation would maximize information flow between the participants
captured by music voices recorded in separate tracks. We propose a method to
compute the information flow using pre-trained generative models as entropy
estimators. We demonstrate how our method matches with human perception using a
qualitative study.
Related papers
- MusicFlow: Cascaded Flow Matching for Text Guided Music Generation [53.63948108922333]
MusicFlow is a cascaded text-to-music generation model based on flow matching.
We leverage masked prediction as the training objective, enabling the model to generalize to other tasks such as music infilling and continuation.
arXiv Detail & Related papers (2024-10-27T15:35:41Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
Estimating music piece difficulty is important for organizing educational music collections.
Our work employs explainable descriptors for difficulty estimation in symbolic music representations.
Our approach, evaluated in piano repertoire categorized in 9 classes, achieved 41.4% accuracy independently, with a mean squared error (MSE) of 1.7.
arXiv Detail & Related papers (2024-08-01T11:23:42Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
We are inspired by how musicians compose music not just from a movie script, but also through visualizations.
We propose MeLFusion, a model that can effectively use cues from a textual description and the corresponding image to synthesize music.
Our exhaustive experimental evaluation suggests that adding visual information to the music synthesis pipeline significantly improves the quality of generated music.
arXiv Detail & Related papers (2024-06-07T06:38:59Z) - MusicRL: Aligning Music Generation to Human Preferences [62.44903326718772]
MusicRL is the first music generation system finetuned from human feedback.
We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences.
We train MusicRL-U, the first text-to-music model that incorporates human feedback at scale.
arXiv Detail & Related papers (2024-02-06T18:36:52Z) - Investigating Personalization Methods in Text to Music Generation [21.71190700761388]
Motivated by recent advances in the computer vision domain, we are the first to explore the combination of pre-trained text-to-audio diffusers with two established personalization methods.
For evaluation, we construct a novel dataset with prompts and music clips.
Our analysis shows that similarity metrics are in accordance with user preferences and that current personalization approaches tend to learn rhythmic music constructs more easily than melody.
arXiv Detail & Related papers (2023-09-20T08:36:34Z) - Contrastive Learning with Positive-Negative Frame Mask for Music
Representation [91.44187939465948]
This paper proposes a novel Positive-nEgative frame mask for Music Representation based on the contrastive learning framework, abbreviated as PEMR.
We devise a novel contrastive learning objective to accommodate both self-augmented positives/negatives sampled from the same music.
arXiv Detail & Related papers (2022-03-17T07:11:42Z) - Flat latent manifolds for music improvisation between human and machine [9.571383193449648]
We consider a music-generating algorithm as a counterpart to a human musician, in a setting where reciprocal improvisation is to lead to new experiences.
In the learned model, we generate novel musical sequences by quantification in latent space.
We provide empirical evidence for our method via a set of experiments on music and we deploy our model for an interactive jam session with a professional drummer.
arXiv Detail & Related papers (2022-02-23T09:00:17Z) - Evaluating Deep Music Generation Methods Using Data Augmentation [13.72212417973239]
We focus on a homogeneous, objective framework for evaluating samples of algorithmically generated music.
We do not seek to assess the musical merit of generated music, but instead explore whether generated samples contain meaningful information pertaining to emotion or mood/theme.
arXiv Detail & Related papers (2021-12-31T20:35:46Z) - Personalized Popular Music Generation Using Imitation and Structure [1.971709238332434]
We propose a statistical machine learning model that is able to capture and imitate the structure, melody, chord, and bass style from a given example seed song.
An evaluation using 10 pop songs shows that our new representations and methods are able to create high-quality stylistic music.
arXiv Detail & Related papers (2021-05-10T23:43:00Z) - Music Harmony Generation, through Deep Learning and Using a
Multi-Objective Evolutionary Algorithm [0.0]
This paper introduces a genetic multi-objective evolutionary optimization algorithm for the generation of polyphonic music.
One of the goals is the rules and regulations of music, which, along with the other two goals, including the scores of music experts and ordinary listeners, fits the cycle of evolution to get the most optimal response.
The results show that the proposed method is able to generate difficult and pleasant pieces with desired styles and lengths, along with harmonic sounds that follow the grammar while attracting the listener, at the same time.
arXiv Detail & Related papers (2021-02-16T05:05:54Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
This paper presents a deep reinforcement learning algorithm for online accompaniment generation.
The proposed algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part.
arXiv Detail & Related papers (2020-02-08T03:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.