Feature Mapping in Physics-Informed Neural Networks (PINNs)
- URL: http://arxiv.org/abs/2402.06955v3
- Date: Mon, 21 Oct 2024 15:26:26 GMT
- Title: Feature Mapping in Physics-Informed Neural Networks (PINNs)
- Authors: Chengxi Zeng, Tilo Burghardt, Alberto M Gambaruto,
- Abstract summary: We study the training dynamics of PINNs with a feature mapping layer via the limiting Conjugate Kernel and Neural Tangent Kernel.
We propose conditionally positive definite Radial Basis Function as a better alternative.
- Score: 1.9819034119774483
- License:
- Abstract: In this paper, the training dynamics of PINNs with a feature mapping layer via the limiting Conjugate Kernel and Neural Tangent Kernel is investigated, shedding light on the convergence of PINNs; Although the commonly used Fourier-based feature mapping has achieved great success, we show its inadequacy in some physics scenarios. Via these two scopes, we propose conditionally positive definite Radial Basis Function as a better alternative. Lastly, we explore the feature mapping numerically in wide neural networks. Our empirical results reveal the efficacy of our method in diverse forward and inverse problem sets. Composing feature functions is found to be a practical way to address the expressivity and generalisability trade-off, viz., tuning the bandwidth of the kernels and the surjectivity of the feature mapping function. This simple technique can be implemented for coordinate inputs and benefits the broader PINNs research.
Related papers
- Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
We study the approximation of functionals on kernel reproducing Hilbert spaces (RKHS's) using neural networks.
We derive explicit error bounds for those induced by inverse multiquadric, Gaussian, and Sobolev kernels.
We apply our findings to functional regression, proving that neural networks can accurately approximate the regression maps.
arXiv Detail & Related papers (2024-03-18T18:58:23Z) - RBF-PINN: Non-Fourier Positional Embedding in Physics-Informed Neural Networks [1.9819034119774483]
We highlight the limitations of widely used Fourier-based feature mapping in certain situations.
We suggest the use of the conditionally positive definite Radial Basis Function.
Our method can be seamlessly integrated into coordinate-based input neural networks.
arXiv Detail & Related papers (2024-02-13T10:54:43Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
We propose a functional deep neural network with an efficient and fully data-dependent dimension reduction method.
The architecture of our functional net consists of a kernel embedding step, a projection step, and a deep ReLU neural network for the prediction.
The utilization of smooth kernel embedding enables our functional net to be discretization invariant, efficient, and robust to noisy observations.
arXiv Detail & Related papers (2024-01-05T16:43:39Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - On the eigenvector bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural networks [0.0]
We show that neural networks (PINNs) struggle in cases where the target functions to be approximated exhibit high-frequency or multi-scale features.
We construct novel architectures that employ multi-scale random observational features and justify how such coordinate embedding layers can lead to robust and accurate PINN models.
arXiv Detail & Related papers (2020-12-18T04:19:30Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.