Generalization Error of Graph Neural Networks in the Mean-field Regime
- URL: http://arxiv.org/abs/2402.07025v3
- Date: Mon, 1 Jul 2024 09:27:34 GMT
- Title: Generalization Error of Graph Neural Networks in the Mean-field Regime
- Authors: Gholamali Aminian, Yixuan He, Gesine Reinert, Ćukasz Szpruch, Samuel N. Cohen,
- Abstract summary: We explore two widely utilized types of graph neural networks: graph convolutional neural networks and message passing graph neural networks.
Our novel approach involves deriving upper bounds within the mean-field regime for evaluating the generalization error of these graph neural networks.
- Score: 10.35214360391282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural networks and message passing graph neural networks. Prior to this study, existing bounds on the generalization error in the over-parametrized regime were uninformative, limiting our understanding of over-parameterized network performance. Our novel approach involves deriving upper bounds within the mean-field regime for evaluating the generalization error of these graph neural networks. We establish upper bounds with a convergence rate of $O(1/n)$, where $n$ is the number of graph samples. These upper bounds offer a theoretical assurance of the networks' performance on unseen data in the challenging over-parameterized regime and overall contribute to our understanding of their performance.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - A Survey on Graph Classification and Link Prediction based on GNN [11.614366568937761]
This review article delves into the world of graph convolutional neural networks.
It elaborates on the fundamentals of graph convolutional neural networks.
It elucidates the graph neural network models based on attention mechanisms and autoencoders.
arXiv Detail & Related papers (2023-07-03T09:08:01Z) - Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on
Graph Diffusion [17.70434437597516]
We present generalization bounds that scale with the largest singular value of the graph neural network's feature diffusion matrix.
These bounds are numerically much smaller than prior bounds for real-world graphs.
We measure the stability of graph neural networks against noise perturbations using Hessians.
arXiv Detail & Related papers (2023-02-09T05:54:17Z) - Predicting the generalization gap in neural networks using topological
data analysis [33.511371257571504]
We study the generalization gap of neural networks using methods from topological data analysis.
We compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase.
We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set.
arXiv Detail & Related papers (2022-03-23T11:15:36Z) - Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural
Networks [13.518582483147325]
We provide a rigorous analysis of the performance of neural networks in the context of transductive inference.
We show that transductive Rademacher complexity can explain the generalisation properties of graph convolutional networks for block models.
arXiv Detail & Related papers (2021-12-07T20:06:23Z) - Nonlinear Weighted Directed Acyclic Graph and A Priori Estimates for
Neural Networks [9.43712471169533]
We first present a novel graph theoretical formulation of neural network models, including fully connected, residual network(ResNet) and densely connected networks(DenseNet)
We extend the error analysis of the population risk for two layer networkciteew 2019prioriTwo and ResNetcitee 2019prioriRes to DenseNet, and show further that for neural networks satisfying certain mild conditions, similar estimates can be obtained.
arXiv Detail & Related papers (2021-03-30T13:54:33Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.