Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs
- URL: http://arxiv.org/abs/2402.07116v2
- Date: Sat, 10 Aug 2024 04:53:16 GMT
- Title: Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs
- Authors: Zicheng Zhang, Haoning Wu, Erli Zhang, Guangtao Zhai, Weisi Lin,
- Abstract summary: We design benchmark settings to emulate human language responses related to low-level vision.
We extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs.
We demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than humans.
- Score: 71.07108539262721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of Multi-modality Large Language Models (MLLMs) has navigated a paradigm shift in computer vision, moving towards versatile foundational models. However, evaluating MLLMs in low-level visual perception and understanding remains a yet-to-explore domain. To this end, we design benchmark settings to emulate human language responses related to low-level vision: the low-level visual perception (A1) via visual question answering related to low-level attributes (e.g. clarity, lighting); and the low-level visual description (A2), on evaluating MLLMs for low-level text descriptions. Furthermore, given that pairwise comparison can better avoid ambiguity of responses and has been adopted by many human experiments, we further extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs. Specifically, for perception (A1), we carry out the LLVisionQA+ dataset, comprising 2,990 single images and 1,999 image pairs each accompanied by an open-ended question about its low-level features; for description (A2), we propose the LLDescribe+ dataset, evaluating MLLMs for low-level descriptions on 499 single images and 450 pairs. Additionally, we evaluate MLLMs on assessment (A3) ability, i.e. predicting score, by employing a softmax-based approach to enable all MLLMs to generate quantifiable quality ratings, tested against human opinions in 7 image quality assessment (IQA) datasets. With 24 MLLMs under evaluation, we demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than single image evaluations (like humans). We hope that our benchmark will motivate further research into uncovering and enhancing these nascent capabilities of MLLMs. Datasets will be available at https://github.com/Q-Future/Q-Bench.
Related papers
- MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.
It aims to localize instances of interest across multiple images based on open-ended text prompts.
We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - Revisiting Multi-Modal LLM Evaluation [29.094387692681337]
We pioneer evaluating recent MLLMs (LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, and GPT-4o) on datasets designed to address weaknesses in earlier ones.
Our code is integrated into the widely used LAVIS framework for MLLM evaluation, enabling the rapid assessment of future MLLMs.
arXiv Detail & Related papers (2024-08-09T20:55:46Z) - The Instinctive Bias: Spurious Images lead to Illusion in MLLMs [34.91795817316696]
We identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers.
We propose CorrelationQA, the first benchmark that assesses the visual illusion level given spurious images.
We conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees.
arXiv Detail & Related papers (2024-02-06T06:48:46Z) - Mementos: A Comprehensive Benchmark for Multimodal Large Language Model
Reasoning over Image Sequences [80.54979242912944]
This paper introduces Mementos, a new benchmark designed to assess MLLMs' sequential image reasoning abilities.
We find that MLLMs struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects.
arXiv Detail & Related papers (2024-01-19T07:10:13Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
Multi-modality Large Language Models (MLLMs) have catalyzed a shift in computer vision from specialized models to general-purpose foundation models.
We present Q-Bench, a holistic benchmark crafted to evaluate potential abilities of MLLMs on three realms: low-level visual perception, low-level visual description, and overall visual quality assessment.
arXiv Detail & Related papers (2023-09-25T14:43:43Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub)
Our LVLM-eHub consists of $8$ representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform.
The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario.
arXiv Detail & Related papers (2023-06-15T16:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.