A Random Ensemble of Encrypted Vision Transformers for Adversarially
Robust Defense
- URL: http://arxiv.org/abs/2402.07183v1
- Date: Sun, 11 Feb 2024 12:35:28 GMT
- Title: A Random Ensemble of Encrypted Vision Transformers for Adversarially
Robust Defense
- Authors: Ryota Iijima, Sayaka Shiota, Hitoshi Kiya
- Abstract summary: Deep neural networks (DNNs) are well known to be vulnerable to adversarial examples (AEs)
We propose a novel method using the vision transformer (ViT) that is a random ensemble of encrypted models for enhancing robustness against both white-box and black-box attacks.
In experiments, the method was demonstrated to be robust against not only white-box attacks but also black-box ones in an image classification task.
- Score: 6.476298483207895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are well known to be vulnerable to adversarial
examples (AEs). In previous studies, the use of models encrypted with a secret
key was demonstrated to be robust against white-box attacks, but not against
black-box ones. In this paper, we propose a novel method using the vision
transformer (ViT) that is a random ensemble of encrypted models for enhancing
robustness against both white-box and black-box attacks. In addition, a
benchmark attack method, called AutoAttack, is applied to models to test
adversarial robustness objectively. In experiments, the method was demonstrated
to be robust against not only white-box attacks but also black-box ones in an
image classification task on the CIFAR-10 and ImageNet datasets. The method was
also compared with the state-of-the-art in a standardized benchmark for
adversarial robustness, RobustBench, and it was verified to outperform
conventional defenses in terms of clean accuracy and robust accuracy.
Related papers
- Privacy-preserving Universal Adversarial Defense for Black-box Models [20.968518031455503]
We introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture.
Our approach involves querying the target model by querying it with data, creating a white-box surrogate while preserving data privacy.
Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses.
arXiv Detail & Related papers (2024-08-20T08:40:39Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - A Random Ensemble of Encrypted models for Enhancing Robustness against
Adversarial Examples [6.476298483207895]
Vision transformer (ViT) is more robust against the property of adversarial transferability than convolutional neural network (CNN) models.
In this article, we propose a random ensemble of encrypted ViT models to achieve much more robust models.
arXiv Detail & Related papers (2024-01-05T04:43:14Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - Enhanced Security against Adversarial Examples Using a Random Ensemble
of Encrypted Vision Transformer Models [12.29209267739635]
Vision transformer (ViT) is more robust against the property of adversarial transferability than convolutional neural network (CNN) models.
In this article, we propose a random ensemble of encrypted ViT models to achieve much more robust models.
arXiv Detail & Related papers (2023-07-26T06:50:58Z) - Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence [34.35162562625252]
Black-box adversarial attacks have demonstrated strong potential to compromise machine learning models.
We study a new paradigm of black-box attacks with provable guarantees.
This new black-box attack unveils significant vulnerabilities of machine learning models.
arXiv Detail & Related papers (2023-04-10T01:12:09Z) - Cross-Modal Transferable Adversarial Attacks from Images to Videos [82.0745476838865]
Recent studies have shown that adversarial examples hand-crafted on one white-box model can be used to attack other black-box models.
We propose a simple yet effective cross-modal attack method, named as Image To Video (I2V) attack.
I2V generates adversarial frames by minimizing the cosine similarity between features of pre-trained image models from adversarial and benign examples.
arXiv Detail & Related papers (2021-12-10T08:19:03Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box attacks aim to craft adversarial perturbations by querying input-output pairs of machine learning models.
Black-box attacks often suffer from the issue of query inefficiency due to the high dimensionality of the input space.
We propose a novel technique called the spanning attack, which constrains adversarial perturbations in a low-dimensional subspace via spanning an auxiliary unlabeled dataset.
arXiv Detail & Related papers (2020-05-11T05:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.