Leveraging Digital Cousins for Ensemble Q-Learning in Large-Scale
Wireless Networks
- URL: http://arxiv.org/abs/2402.08022v1
- Date: Mon, 12 Feb 2024 19:39:07 GMT
- Title: Leveraging Digital Cousins for Ensemble Q-Learning in Large-Scale
Wireless Networks
- Authors: Talha Bozkus, Urbashi Mitra
- Abstract summary: A novel ensemble Q-learning algorithm is presented to optimize wireless networks.
The proposed algorithm can achieve up to 50% less average error with up to 40% less runtime complexity than the state-of-the-art reinforcement learning algorithms.
- Score: 21.30645601474163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing large-scale wireless networks, including optimal resource
management, power allocation, and throughput maximization, is inherently
challenging due to their non-observable system dynamics and heterogeneous and
complex nature. Herein, a novel ensemble Q-learning algorithm that addresses
the performance and complexity challenges of the traditional Q-learning
algorithm for optimizing wireless networks is presented. Ensemble learning with
synthetic Markov Decision Processes is tailored to wireless networks via new
models for approximating large state-space observable wireless networks. In
particular, digital cousins are proposed as an extension of the traditional
digital twin concept wherein multiple Q-learning algorithms on multiple
synthetic Markovian environments are run in parallel and their outputs are
fused into a single Q-function. Convergence analyses of key statistics and
Q-functions and derivations of upper bounds on the estimation bias and variance
are provided. Numerical results across a variety of real-world wireless
networks show that the proposed algorithm can achieve up to 50% less average
policy error with up to 40% less runtime complexity than the state-of-the-art
reinforcement learning algorithms. It is also shown that theoretical results
properly predict trends in the experimental results.
Related papers
- Coverage Analysis of Multi-Environment Q-Learning Algorithms for Wireless Network Optimization [18.035417008213077]
Recent advancements include ensemble multi-environment hybrid Q-learning algorithms.
We show that our algorithm can achieve %50 less policy error and %40 less runtime complexity than state-of-the-art reinforcement learning algorithms.
arXiv Detail & Related papers (2024-08-29T20:09:20Z) - Multi-Timescale Ensemble Q-learning for Markov Decision Process Policy
Optimization [21.30645601474163]
Original Q-learning suffers from performance and complexity challenges across very large networks.
New model-free ensemble reinforcement learning algorithm which adapts the classical Q-learning is proposed to handle these challenges.
Numerical results show that the proposed algorithm can achieve up to 55% less average policy error with up to 50% less runtime complexity.
arXiv Detail & Related papers (2024-02-08T08:08:23Z) - Deep Learning Based Uplink Multi-User SIMO Beamforming Design [32.00286337259923]
5G wireless communication networks offer high data rates, extensive coverage, minimal latency and energy-efficient performance.
Traditional approaches have shortcomings when it comes to computational complexity and their ability to adapt to dynamic conditions.
We propose a novel unsupervised deep learning framework, which is called NNBF, for the design of uplink receive multi-user single input multiple output (MU-SIMO) beamforming.
arXiv Detail & Related papers (2023-09-28T17:04:41Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Learn to Communicate with Neural Calibration: Scalability and
Generalization [10.775558382613077]
We propose a scalable and generalizable neural calibration framework for future wireless system design.
The proposed neural calibration framework is applied to solve challenging resource management problems in massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2021-10-01T09:00:25Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
It is well-known problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks.
We propose a novel deep learning based paper algorithm to address this problem.
arXiv Detail & Related papers (2020-11-08T12:48:06Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.