An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization
- URL: http://arxiv.org/abs/2402.08097v2
- Date: Fri, 31 May 2024 17:20:29 GMT
- Title: An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization
- Authors: Jincheng Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, Aryan Mokhtari,
- Abstract summary: We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
- Score: 16.709026203727007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria. Specifically, when the feasible set is compact, we show that our method requires at most $\mathcal{O}(\max\{1/\sqrt{\epsilon_{f}}, 1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-suboptimal and $\epsilon_g$-infeasible. Moreover, under the additional assumption that the lower-level objective satisfies the $r$-th H\"olderian error bound, we show that our method achieves an iteration complexity of $\mathcal{O}(\max\{\epsilon_{f}^{-\frac{2r-1}{2r}},\epsilon_{g}^{-\frac{2r-1}{2r}}\})$, which matches the optimal complexity of single-level convex constrained optimization when $r=1$.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Adaptive Mirror Descent Bilevel Optimization [25.438298531555468]
We propose a class of efficient adaptive bilevel methods based on mirror descent for non bifraclevel optimization.
We provide an analysis for methods under some conditions, and prove that our methods have a fast number of iterations.
arXiv Detail & Related papers (2023-11-08T08:17:09Z) - Projection-Free Methods for Stochastic Simple Bilevel Optimization with
Convex Lower-level Problem [16.9187409976238]
We study a class of convex bilevel optimization problems, also known as simple bilevel optimization.
We introduce novel bilevel optimization methods that approximate the solution set of the lower-level problem.
arXiv Detail & Related papers (2023-08-15T02:37:11Z) - On Finding Small Hyper-Gradients in Bilevel Optimization: Hardness Results and Improved Analysis [18.08351275534193]
Bilevel optimization reveals the inner structure of otherwise oblique optimization problems.
A common goal in bilevel optimization is to a hyper-objective that implicitly depends on the solution of the set of parameters.
arXiv Detail & Related papers (2023-01-02T15:09:12Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - A Conditional Gradient-based Method for Simple Bilevel Optimization with
Convex Lower-level Problem [18.15207779559351]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane.
Our method achieves best-known assumption for the considered class of bilevel problems.
arXiv Detail & Related papers (2022-06-17T16:12:47Z) - Optimal Algorithms for Stochastic Multi-Level Compositional Optimization [46.77664277596764]
We solve the problem of multi-level compositional optimization, where the objective function is a limitation of multiple but possibly non-optimal functions.
To make use of the Adaptive Multi-level Variance Reduction method (SMVR), we also achieves the same optimal complexities but converges faster in practice.
arXiv Detail & Related papers (2022-02-15T16:02:32Z) - Efficiently Escaping Saddle Points in Bilevel Optimization [48.925688192913]
Bilevel optimization is one of the problems in machine learning.
Recent developments in bilevel optimization converge on the first fundamental nonaptature multi-step analysis.
arXiv Detail & Related papers (2022-02-08T07:10:06Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.