Mirror Descent-Ascent for mean-field min-max problems
- URL: http://arxiv.org/abs/2402.08106v2
- Date: Tue, 28 May 2024 11:03:44 GMT
- Title: Mirror Descent-Ascent for mean-field min-max problems
- Authors: Razvan-Andrei Lascu, Mateusz B. Majka, Ćukasz Szpruch,
- Abstract summary: We study two variants of the mirror descent-ascent algorithm for solving min-max problems on the space of measures.
We show that the convergence rates to mixed Nash equilibria, measured in the Nikaido-Isoda error, are of order $mathcalOleft(N-1/2right)$ and $mathcalOleft(N-2/3right)$ for the simultaneous and sequential schemes, respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study two variants of the mirror descent-ascent algorithm for solving min-max problems on the space of measures: simultaneous and sequential. We work under assumptions of convexity-concavity and relative smoothness of the payoff function with respect to a suitable Bregman divergence, defined on the space of measures via flat derivatives. We show that the convergence rates to mixed Nash equilibria, measured in the Nikaid\`o-Isoda error, are of order $\mathcal{O}\left(N^{-1/2}\right)$ and $\mathcal{O}\left(N^{-2/3}\right)$ for the simultaneous and sequential schemes, respectively, which is in line with the state-of-the-art results for related finite-dimensional algorithms.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
When the non problem is by which the non problem is by whichity, the sample of first-order methods may depend linearly on the problem dimension, is for undesirable problems.
Our algorithms allow for the estimate of complexity using the distance of.
mathO (log d) / EuM4.
We prove that DISFOM can sharpen variance employing $mathO (log d) / EuM4.
arXiv Detail & Related papers (2024-06-27T18:38:42Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - Mirror Descent with Relative Smoothness in Measure Spaces, with
application to Sinkhorn and EM [11.007661197604065]
This paper studies the convergence of the mirror descent algorithm in an infinite-dimensional setting.
Applying our result to joint distributions and the Kullback--Leibler divergence, we show that Sinkhorn's primal iterations for optimal transport correspond to a mirror descent.
arXiv Detail & Related papers (2022-06-17T16:19:47Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Synchronizing Probability Measures on Rotations via Optimal Transport [26.110033098056334]
We introduce a new paradigm,textitmeasure synchronization$, for synchronizing graphs with measure-valued uncertainties.
In particular, we aim estimating absolute orientations of absolute rotations on a graph on-on-manis.
arXiv Detail & Related papers (2020-04-01T18:44:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.