Uncertainty Quantification via Stable Distribution Propagation
- URL: http://arxiv.org/abs/2402.08324v1
- Date: Tue, 13 Feb 2024 09:40:19 GMT
- Title: Uncertainty Quantification via Stable Distribution Propagation
- Authors: Felix Petersen, Aashwin Mishra, Hilde Kuehne, Christian Borgelt,
Oliver Deussen, Mikhail Yurochkin
- Abstract summary: We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
- Score: 60.065272548502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new approach for propagating stable probability distributions
through neural networks. Our method is based on local linearization, which we
show to be an optimal approximation in terms of total variation distance for
the ReLU non-linearity. This allows propagating Gaussian and Cauchy input
uncertainties through neural networks to quantify their output uncertainties.
To demonstrate the utility of propagating distributions, we apply the proposed
method to predicting calibrated confidence intervals and selective prediction
on out-of-distribution data. The results demonstrate a broad applicability of
propagating distributions and show the advantages of our method over other
approaches such as moment matching.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Data-Driven Approximations of Chance Constrained Programs in
Nonstationary Environments [3.126118485851773]
We study sample average approximations (SAA) of chance constrained programs.
We consider a nonstationary variant of this problem, where the random samples are assumed to be independently drawn in a sequential fashion.
We propose a novel robust SAA method exploiting information about the Wasserstein distance between the sequence of data-generating distributions and the actual chance constraint distribution.
arXiv Detail & Related papers (2022-05-08T01:01:57Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
Varying domains and biased datasets can lead to differences between the training and the target distributions.
Current approaches for alleviating this often rely on estimating the ratio of training and target probability density functions.
arXiv Detail & Related papers (2020-10-23T22:13:00Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed.
GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way.
The proposed framework is then applied to supply chain optimization under demand uncertainty.
arXiv Detail & Related papers (2020-02-28T00:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.