Generating Java Methods: An Empirical Assessment of Four AI-Based Code
Assistants
- URL: http://arxiv.org/abs/2402.08431v2
- Date: Wed, 14 Feb 2024 10:58:56 GMT
- Title: Generating Java Methods: An Empirical Assessment of Four AI-Based Code
Assistants
- Authors: Vincenzo Corso, Leonardo Mariani, Daniela Micucci and Oliviero
Riganelli
- Abstract summary: We assess the effectiveness of four popular AI-based code assistants, namely GitHub Copilot, Tabnine, ChatGPT, and Google Bard.
Results show that Copilot is often more accurate than other techniques, yet none of the assistants is completely subsumed by the rest of the approaches.
- Score: 5.32539007352208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based code assistants are promising tools that can facilitate and speed up
code development. They exploit machine learning algorithms and natural language
processing to interact with developers, suggesting code snippets (e.g., method
implementations) that can be incorporated into projects. Recent studies
empirically investigated the effectiveness of code assistants using simple
exemplary problems (e.g., the re-implementation of well-known algorithms),
which fail to capture the spectrum and nature of the tasks actually faced by
developers. In this paper, we expand the knowledge in the area by comparatively
assessing four popular AI-based code assistants, namely GitHub Copilot,
Tabnine, ChatGPT, and Google Bard, with a dataset of 100 methods that we
constructed from real-life open-source Java projects, considering a variety of
cases for complexity and dependency from contextual elements. Results show that
Copilot is often more accurate than other techniques, yet none of the
assistants is completely subsumed by the rest of the approaches. Interestingly,
the effectiveness of these solutions dramatically decreases when dealing with
dependencies outside the boundaries of single classes.
Related papers
- RepoGraph: Enhancing AI Software Engineering with Repository-level Code Graph [63.87660059104077]
We present RepoGraph, a plug-in module that manages a repository-level structure for modern AI software engineering solutions.
RepoGraph substantially boosts the performance of all systems, leading to a new state-of-the-art among open-source frameworks.
arXiv Detail & Related papers (2024-10-03T05:45:26Z) - Assessing AI-Based Code Assistants in Method Generation Tasks [5.32539007352208]
This study compares four AI-based code assistants, GitHub Copilot, Tabnine, ChatGPT, and Google Bard, in method generation tasks.
Results show that code assistants are useful, with complementary capabilities, although they rarely generate ready-to-use correct code.
arXiv Detail & Related papers (2024-02-14T08:52:45Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
This study focuses on the initial experiences of 62 participants who used a contextualized coding AI assistant -- named StackSpot AI -- in a controlled setting.
Assistants' use resulted in significant time savings, easier access to documentation, and the generation of accurate codes for internal APIs.
challenges associated with the knowledge sources necessary to make the coding assistant access more contextual information as well as variable responses and limitations in handling complex codes were observed.
arXiv Detail & Related papers (2023-11-30T10:52:28Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics.
The paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration.
arXiv Detail & Related papers (2023-05-19T17:25:54Z) - How Generative AI models such as ChatGPT can be (Mis)Used in SPC
Practice, Education, and Research? An Exploratory Study [2.0841728192954663]
Generative Artificial Intelligence (AI) models have the potential to revolutionize Statistical Process Control (SPC) practice, learning, and research.
These tools are in the early stages of development and can be easily misused or misunderstood.
We explore ChatGPT's ability to provide code, explain basic concepts, and create knowledge related to SPC practice, learning, and research.
arXiv Detail & Related papers (2023-02-17T15:48:37Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
The research applies AI-driven code assistants to analyze a selection of influential computer code that has shaped modern technology.
The original contribution of this study was to examine half of the most significant code advances in the last 50 years.
arXiv Detail & Related papers (2023-01-05T23:17:17Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
We introduce AlphaCode, a system for code generation that can create novel solutions to problems that require deeper reasoning.
In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3%.
arXiv Detail & Related papers (2022-02-08T23:16:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.