NeuroIDBench: An Open-Source Benchmark Framework for the Standardization of Methodology in Brainwave-based Authentication Research
- URL: http://arxiv.org/abs/2402.08656v5
- Date: Thu, 11 Jul 2024 15:18:17 GMT
- Title: NeuroIDBench: An Open-Source Benchmark Framework for the Standardization of Methodology in Brainwave-based Authentication Research
- Authors: Avinash Kumar Chaurasia, Matin Fallahi, Thorsten Strufe, Philipp Terhörst, Patricia Arias Cabarcos,
- Abstract summary: Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques.
NeuroIDBench is a flexible open source tool to benchmark brainwave-based authentication models.
- Score: 4.9286860173040825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroIDBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroIDBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroIDBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.
Related papers
- Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification [2.1548132286330453]
Researchers have recently sought to leverage advances in machine learning algorithms to detect symptoms of altered gait.
This paper analyzes existing approaches to identify gaps inhibiting translation.
We propose our strong baseline called Asynchronous Multi-Stream Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple categories of pathological gaits.
arXiv Detail & Related papers (2024-09-20T16:47:45Z) - Beyond Gaze Points: Augmenting Eye Movement with Brainwave Data for Multimodal User Authentication in Extended Reality [4.114205202954365]
We introduce a multimodal biometric authentication system that combines eye movement and brainwave patterns.
Our system yields an excellent Equal Error Rate (EER) of 0.298%, which means an 83.6% reduction in EER compared to the single eye movement modality.
arXiv Detail & Related papers (2024-04-29T13:42:55Z) - Biometrics Employing Neural Network [0.0]
Fingerprints, iris and retina patterns, facial recognition, hand shapes, palm prints, and voice recognition are frequently used forms of biometrics.
For systems to be effective and widely accepted, the error rate in recognition and verification must approach zero.
Artificial Neural Networks, which simulate the human brain's operations, present themselves as a promising approach.
arXiv Detail & Related papers (2024-02-01T03:59:04Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems [50.101188703826686]
We present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.
NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia.
arXiv Detail & Related papers (2023-04-10T15:12:09Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - AuthNet: A Deep Learning based Authentication Mechanism using Temporal
Facial Feature Movements [0.0]
We propose an alternative authentication mechanism that uses both facial recognition and the unique movements of that particular face while uttering a password.
The proposed model is not inhibited by language barriers because a user can set a password in any language.
arXiv Detail & Related papers (2020-12-04T10:46:12Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.