Graph Mamba: Towards Learning on Graphs with State Space Models
- URL: http://arxiv.org/abs/2402.08678v2
- Date: Mon, 19 Feb 2024 18:53:13 GMT
- Title: Graph Mamba: Towards Learning on Graphs with State Space Models
- Authors: Ali Behrouz and Farnoosh Hashemi
- Abstract summary: We present a new class of Graph Neural Networks (GNNs) based on selective State Space Models (SSMs)
GMNs attain an outstanding performance in long-range, small-scale, large-scale, and benchmark benchmark experiments.
- Score: 2.039632659682125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have shown promising potential in graph
representation learning. The majority of GNNs define a local message-passing
mechanism, propagating information over the graph by stacking multiple layers.
These methods, however, are known to suffer from two major limitations:
over-squashing and poor capturing of long-range dependencies. Recently, Graph
Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural
Networks (MPNNs). GTs, however, have quadratic computational cost, lack
inductive biases on graph structures, and rely on complex Positional/Structural
Encodings (SE/PE). In this paper, we show that while Transformers, complex
message-passing, and SE/PE are sufficient for good performance in practice,
neither is necessary. Motivated by the recent success of State Space Models
(SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general
framework for a new class of GNNs based on selective SSMs. We discuss and
categorize the new challenges when adapting SSMs to graph-structured data, and
present four required and one optional steps to design GMNs, where we choose
(1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of
Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE
and SE. We further provide theoretical justification for the power of GMNs.
Experiments demonstrate that despite much less computational cost, GMNs attain
an outstanding performance in long-range, small-scale, large-scale, and
heterophilic benchmark datasets.
Related papers
- What Can We Learn from State Space Models for Machine Learning on Graphs? [11.38076877943004]
We propose Graph State Space Convolution (GSSC) as a principled extension of State Space Models (SSMs) to graph-structured data.
By leveraging global permutation-equivariant set aggregation and factorizable graph kernels, GSSC preserves all three advantages of SSMs.
Our findings highlight the potential of GSSC as a powerful and scalable model for graph machine learning.
arXiv Detail & Related papers (2024-06-09T15:03:36Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Factor Graph Neural Networks [20.211455592922736]
Graph Neural Networks (GNNs) can learn powerful representations in an end-to-end fashion with great success in many real-world applications.
We propose Factor Graph Neural Networks (FGNNs) to effectively capture higher-order relations for inference and learning.
arXiv Detail & Related papers (2023-08-02T00:32:02Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
A major issue with arbitrary graphs is the absence of canonical positional information of nodes.
We introduce Positional nodes (PE) of nodes, and inject it into the input layer, like in Transformers.
We observe a performance increase for molecular datasets, from 2.87% up to 64.14% when considering learnable PE for both GNN classes.
arXiv Detail & Related papers (2021-10-15T05:59:15Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.