DUEL: Duplicate Elimination on Active Memory for Self-Supervised
Class-Imbalanced Learning
- URL: http://arxiv.org/abs/2402.08963v1
- Date: Wed, 14 Feb 2024 06:09:36 GMT
- Title: DUEL: Duplicate Elimination on Active Memory for Self-Supervised
Class-Imbalanced Learning
- Authors: Won-Seok Choi, Hyundo Lee, Dong-Sig Han, Junseok Park, Heeyeon Koo and
Byoung-Tak Zhang
- Abstract summary: We propose an active data filtering process during self-supervised pre-training in our novel framework, Duplicate Elimination (DUEL)
This framework integrates an active memory inspired by human working memory and introduces distinctiveness information, which measures the diversity of the data in the memory.
The DUEL policy, which replaces the most duplicated data with new samples, aims to enhance the distinctiveness information in the memory and thereby mitigate class imbalances.
- Score: 19.717868805172323
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent machine learning algorithms have been developed using well-curated
datasets, which often require substantial cost and resources. On the other
hand, the direct use of raw data often leads to overfitting towards frequently
occurring class information. To address class imbalances cost-efficiently, we
propose an active data filtering process during self-supervised pre-training in
our novel framework, Duplicate Elimination (DUEL). This framework integrates an
active memory inspired by human working memory and introduces distinctiveness
information, which measures the diversity of the data in the memory, to
optimize both the feature extractor and the memory. The DUEL policy, which
replaces the most duplicated data with new samples, aims to enhance the
distinctiveness information in the memory and thereby mitigate class
imbalances. We validate the effectiveness of the DUEL framework in
class-imbalanced environments, demonstrating its robustness and providing
reliable results in downstream tasks. We also analyze the role of the DUEL
policy in the training process through various metrics and visualizations.
Related papers
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.
We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.
A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning [23.878495627964146]
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human.
Existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models.
In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE.
arXiv Detail & Related papers (2024-11-28T13:54:01Z) - Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
We introduce a novel Learning-to-Unlearn (LTU) framework to optimize the unlearning process.
LTU includes a meta-optimization scheme that facilitates models to effectively preserve generalizable knowledge.
We also introduce a Gradient Harmonization strategy to align the optimization trajectories for remembering and forgetting.
arXiv Detail & Related papers (2024-07-15T07:36:00Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.