Generative AI for Pull Request Descriptions: Adoption, Impact, and
Developer Interventions
- URL: http://arxiv.org/abs/2402.08967v1
- Date: Wed, 14 Feb 2024 06:20:57 GMT
- Title: Generative AI for Pull Request Descriptions: Adoption, Impact, and
Developer Interventions
- Authors: Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi Matsumoto
- Abstract summary: GitHub's Copilot for Pull Requests (PRs) is a promising service aiming to automate various developer tasks related to PRs.
In this study, we examine 18,256 PRs in which parts of the descriptions were crafted by generative AI.
Our findings indicate that Copilot for PRs, though in its infancy, is seeing a marked uptick in adoption.
- Score: 11.620351603683496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GitHub's Copilot for Pull Requests (PRs) is a promising service aiming to
automate various developer tasks related to PRs, such as generating summaries
of changes or providing complete walkthroughs with links to the relevant code.
As this innovative technology gains traction in the Open Source Software (OSS)
community, it is crucial to examine its early adoption and its impact on the
development process. Additionally, it offers a unique opportunity to observe
how developers respond when they disagree with the generated content. In our
study, we employ a mixed-methods approach, blending quantitative analysis with
qualitative insights, to examine 18,256 PRs in which parts of the descriptions
were crafted by generative AI. Our findings indicate that: (1) Copilot for PRs,
though in its infancy, is seeing a marked uptick in adoption. (2) PRs enhanced
by Copilot for PRs require less review time and have a higher likelihood of
being merged. (3) Developers using Copilot for PRs often complement the
automated descriptions with their manual input. These results offer valuable
insights into the growing integration of generative AI in software development.
Related papers
- The Impact of Large Language Models on Open-source Innovation: Evidence from GitHub Copilot [0.0]
We study whether GenAI affects collaborative innovation, where contributions are voluntary and unguided.
We observe a significant jump in overall contributions, suggesting that GenAI effectively augments collaborative innovation in an unguided setting.
We discuss practical and policy implications to incentivize high-value innovative solutions.
arXiv Detail & Related papers (2024-09-12T19:59:54Z) - Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
This study aims to examine the influence of AI assistants on software maintainability.
In Phase 1, developers will add a new feature to a Java project, with or without the aid of an AI assistant.
In Phase 2, a randomized controlled trial, will involve a different set of developers evolving random Phase 1 projects - working without AI assistants.
arXiv Detail & Related papers (2024-08-20T11:48:42Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.
We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - Enhancing Security of AI-Based Code Synthesis with GitHub Copilot via Cheap and Efficient Prompt-Engineering [1.7702475609045947]
One of the reasons developers and companies avoid harnessing their full potential is the questionable security of the generated code.
This paper first reviews the current state-of-the-art and identifies areas for improvement on this issue.
We propose a systematic approach based on prompt-altering methods to achieve better code security of AI-based code generators such as GitHub Copilot.
arXiv Detail & Related papers (2024-03-19T12:13:33Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics.
The paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration.
arXiv Detail & Related papers (2023-05-19T17:25:54Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and
Communicating the Uncertainty of AI [49.64037266892634]
We describe an open source Python toolkit named Uncertainty Quantification 360 (UQ360) for the uncertainty quantification of AI models.
The goal of this toolkit is twofold: first, to provide a broad range of capabilities to streamline as well as foster the common practices of quantifying, evaluating, improving, and communicating uncertainty in the AI application development lifecycle; second, to encourage further exploration of UQ's connections to other pillars of trustworthy AI.
arXiv Detail & Related papers (2021-06-02T18:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.