Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method
- URL: http://arxiv.org/abs/2402.08992v1
- Date: Wed, 14 Feb 2024 07:34:22 GMT
- Title: Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method
- Authors: Jiaming Liang
- Abstract summary: The paper establishes a low sample complexity to obtain a high probability guarantee on the convergence of the proposed method.
A subroutine is developed to solve the proximal subproblem, which also serves as a novel technique for variance reduction.
- Score: 5.025654873456757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a stochastic proximal point method to solve a stochastic
convex composite optimization problem. High probability results in stochastic
optimization typically hinge on restrictive assumptions on the stochastic
gradient noise, for example, sub-Gaussian distributions. Assuming only weak
conditions such as bounded variance of the stochastic gradient, this paper
establishes a low sample complexity to obtain a high probability guarantee on
the convergence of the proposed method. Additionally, a notable aspect of this
work is the development of a subroutine to solve the proximal subproblem, which
also serves as a novel technique for variance reduction.
Related papers
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization [10.36447258513813]
We consider a regularized expected reward optimization problem in the non-oblivious setting that covers many existing problems in reinforcement learning (RL)
In particular, the method has shown to admit an $O(epsilon-4)$ sample to an $epsilon$-stationary point, under standard conditions.
Our analysis shows that the sample complexity can be improved from $O(epsilon-4)$ to $O(epsilon-3)$ under additional conditions.
arXiv Detail & Related papers (2024-01-23T06:01:29Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
gradient, clipping is one of the key algorithmic ingredients to derive good high-probability guarantees.
Clipping can spoil the convergence of the popular methods for composite and distributed optimization.
arXiv Detail & Related papers (2023-10-03T07:49:17Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
We develop an implementable proximal point (SPP) method for a class of weakly convex, composite optimization problems.
The proposed algorithm incorporates a variance reduction mechanism and the resulting updates are solved using an inexact semismooth Newton framework.
arXiv Detail & Related papers (2022-04-01T13:08:49Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z) - Distributed Stochastic Nonconvex Optimization and Learning based on
Successive Convex Approximation [26.11677569331688]
We introduce a novel framework for the distributed algorithmic minimization of the sum of the sum of the agents in a network.
We show that the proposed method can be applied to distributed neural networks.
arXiv Detail & Related papers (2020-04-30T15:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.