Solid Waste Detection, Monitoring and Mapping in Remote Sensing Images: A Survey
- URL: http://arxiv.org/abs/2402.09066v2
- Date: Wed, 28 Aug 2024 09:01:37 GMT
- Title: Solid Waste Detection, Monitoring and Mapping in Remote Sensing Images: A Survey
- Authors: Piero Fraternali, Luca Morandini, Sergio Luis Herrera González,
- Abstract summary: Improperly managed landfills contaminate soil and groundwater via infiltration rainwater, posing threats to both animals and humans.
Traditional landfill identification approaches, such as on-site inspections, are time-consuming and expensive.
Earth Observation (EO) satellites, equipped with an array of sensors and imaging capabilities, have been providing high-resolution data for several decades.
- Score: 0.8499685241219366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The detection and characterization of illegal solid waste disposal sites are essential for environmental protection, particularly for mitigating pollution and health hazards. Improperly managed landfills contaminate soil and groundwater via rainwater infiltration, posing threats to both animals and humans. Traditional landfill identification approaches, such as on-site inspections, are time-consuming and expensive. Remote sensing is a cost-effective solution for the identification and monitoring of solid waste disposal sites that enables broad coverage and repeated acquisitions over time. Earth Observation (EO) satellites, equipped with an array of sensors and imaging capabilities, have been providing high-resolution data for several decades. Researchers proposed specialized techniques that leverage remote sensing imagery to perform a range of tasks such as waste site detection, dumping site monitoring, and assessment of suitable locations for new landfills. This review aims to provide a detailed illustration of the most relevant proposals for the detection and monitoring of solid waste sites by describing and comparing the approaches, the implemented techniques, and the employed data. Furthermore, since the data sources are of the utmost importance for developing an effective solid waste detection model, a comprehensive overview of the satellites and publicly available data sets is presented. Finally, this paper identifies the open issues in the state-of-the-art and discusses the relevant research directions for reducing the costs and improving the effectiveness of novel solid waste detection methods.
Related papers
- Enhancing Environmental Monitoring through Multispectral Imaging: The WasteMS Dataset for Semantic Segmentation of Lakeside Waste [1.4604369887945985]
This study introduces WasteMS, the first multispectral dataset established for the semantic segmentation of lakeside waste.
We implemented a rigorous annotation process to label waste in images.
Challenges encountered when using WasteMS for segmenting waste on lakeside lawns were discussed.
arXiv Detail & Related papers (2024-07-24T06:15:28Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Implementing Edge Based Object Detection For Microplastic Debris [0.0]
Plastic has imbibed itself as an indispensable part of our day to day activities.
Plastic debris levels continue to rise with the accumulation of waste in garbage patches in landfills.
The project has been able to produce workable models that can perform on time detection of sampled images.
arXiv Detail & Related papers (2023-07-30T17:55:03Z) - LiDAR-guided object search and detection in Subterranean Environments [12.265807098187297]
This work utilizes the complementary nature of vision and depth sensors to leverage multi-modal information to aid object detection at longer distances.
The proposed work has been thoroughly verified using an ANYmal quadruped robot in underground settings and on datasets collected during the DARPA Subterranean Challenge finals.
arXiv Detail & Related papers (2022-10-26T19:38:19Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - IS-COUNT: Large-scale Object Counting from Satellite Images with
Covariate-based Importance Sampling [90.97859312029615]
We propose an approach to estimate object count statistics over large geographies through sampling.
We show empirically that the proposed framework achieves strong performance on estimating the number of buildings in the United States and Africa, cars in Kenya, brick kilns in Bangladesh, and swimming pools in the U.S.
arXiv Detail & Related papers (2021-12-16T18:59:29Z) - Mapping illegal waste dumping sites with neural-network classification
of satellite imagery [0.0]
In recent years, the severe social and environmental impact of illegal waste dumping sites has made them one of the most serious problems faced by cities in the Global South.
This case study shows the results of a collaboration between Dymaxion Labs and Fundaci'on Bunge y Born to harness this technique in order to create a comprehensive map of potential locations of illegal waste dumping sites in the region.
arXiv Detail & Related papers (2021-10-16T16:05:42Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
We present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste.
This dataset contains over1800fully segmented video frames collected from a real waste sorting plant.
We show that state-of-the-art segmentation methods struggle to correctly detect and classify target objects.
arXiv Detail & Related papers (2021-06-04T22:17:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.