Generalised Kochen-Specker Theorem for Finite Non-Deterministic Outcome Assignments
- URL: http://arxiv.org/abs/2402.09186v2
- Date: Tue, 15 Oct 2024 10:05:09 GMT
- Title: Generalised Kochen-Specker Theorem for Finite Non-Deterministic Outcome Assignments
- Authors: Ravishankar Ramanathan,
- Abstract summary: We show that the Kochen-Specker (KS) theorem rules out hidden variable theories with outcome assignments in the set $0, p, 1-p, 1$ for $p in [0,1/d) cup (1/d, 1/2]$.
- Score: 0.0
- License:
- Abstract: The Kochen-Specker (KS) theorem is a cornerstone result in quantum foundations, establishing that quantum correlations in Hilbert spaces of dimension $d \geq 3$ cannot be explained by (consistent) hidden variable theories that assign a single deterministic outcome to each measurement. Specifically, there exist finite sets of vectors in these dimensions such that no non-contextual deterministic ($\{0,1\}$) outcome assignment is possible obeying the rules of exclusivity and completeness - that the sum of value assignments to any $d$ mutually orthogonal vectors be equal to $1$. Another central result in quantum foundations is Gleason's theorem that justifies the Born rule as a mathematical consequence of the quantum formalism. The KS theorem can be seen as a consequence of Gleason's theorem and the logical compactness theorem. Notably, Gleason's theorem also indicates the existence of KS-type finite vector constructions to rule out other finite alphabet outcome assignments beyond the $\{0,1\}$ case. Here, we propose a generalisation of the KS theorem that rules out hidden variable theories with outcome assignments in the set $\{0, p, 1-p, 1\}$ for $p \in [0,1/d) \cup (1/d, 1/2]$. The case $p = 1/2$ is especially physically significant. We show that in this case the result rules out (consistent) hidden variable theories that are fundamentally binary, i.e., theories where each measurement has fundamentally at most two outcomes (in contrast to the single deterministic outcome per measurement ruled out by KS). We present a device-independent application of this generalised KS theorem by constructing a two-player non-local game for which a perfect quantum winning strategy exists (a Pseudo-telepathy game) while no perfect classical strategy exists even if the players are provided with additional no-signaling resources of PR-box type (with marginal probabilities in $\{0,1/2,1\}$).
Related papers
- Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum Heavy-tailed Bandits [36.458771174473924]
We study multi-armed bandits (MAB) and linear bandits (SLB) with heavy-tailed rewards and quantum reward.
We first propose a new quantum mean estimator for heavy-tailed distributions, which is based on the Quantum Monte Carlo Estimator.
Based on our quantum mean estimator, we focus on quantum heavy-tailed MAB and SLB and propose quantum algorithms based on the Upper Confidence Bound (UCB) framework.
arXiv Detail & Related papers (2023-01-23T19:23:10Z) - Quantum de Finetti Theorems as Categorical Limits, and Limits of State
Spaces of C*-algebras [0.0]
We show that quantum de Finetti construction has a universal property as a categorical limit.
This allows us to pass canonically between categorical treatments of finite dimensional quantum theory and the infinite dimensional.
We also show that the same categorical analysis also justifies a continuous de Finetti theorem for classical probability.
arXiv Detail & Related papers (2022-07-12T20:51:23Z) - Generalized Gleason theorem and finite amount of information for the
context [0.0]
Quantum processes cannot be reduced to classical processes without specifying the context in the description of a measurement procedure.
We consider a class of hidden variable theories by assuming that the amount of information about the measurement context is finite.
arXiv Detail & Related papers (2022-06-23T16:55:50Z) - On the relation between completely bounded and $(1,cb)$-summing maps
with applications to quantum XOR games [65.51757376525798]
We show that given a linear map from a general operator space into the dual of a C$*$-algebra, its completely bounded norm is upper bounded by a universal constant times its $(''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
arXiv Detail & Related papers (2021-12-09T21:06:52Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - General Probabilistic Theories with a Gleason-type Theorem [0.0]
Gleason-type theorems for quantum theory allow one to recover the quantum state space.
We identify the class of general probabilistic theories which also admit Gleason-type theorems.
arXiv Detail & Related papers (2020-05-28T17:29:29Z) - Indeterminism and Undecidability [0.0]
Chaitin's follow-up to Goedel's (first) incompleteness theorem can be proved.
The main point is that Bell and others did not exploit the full empirical content of quantum mechanics.
arXiv Detail & Related papers (2020-03-07T11:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.