MultiMedEval: A Benchmark and a Toolkit for Evaluating Medical
Vision-Language Models
- URL: http://arxiv.org/abs/2402.09262v2
- Date: Fri, 16 Feb 2024 16:36:00 GMT
- Title: MultiMedEval: A Benchmark and a Toolkit for Evaluating Medical
Vision-Language Models
- Authors: Corentin Royer, Bjoern Menze and Anjany Sekuboyina
- Abstract summary: MultiMedEval is an open-source toolkit for fair and reproducible evaluation of large, medical vision-language models (VLM)
It comprehensively assesses the models' performance on a broad array of six multi-modal tasks, conducted over 23 datasets, and spanning over 11 medical domains.
We open-source a Python toolkit with a simple interface and setup process, enabling the evaluation of any VLM in just a few lines of code.
- Score: 1.3535643703577176
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce MultiMedEval, an open-source toolkit for fair and reproducible
evaluation of large, medical vision-language models (VLM). MultiMedEval
comprehensively assesses the models' performance on a broad array of six
multi-modal tasks, conducted over 23 datasets, and spanning over 11 medical
domains. The chosen tasks and performance metrics are based on their widespread
adoption in the community and their diversity, ensuring a thorough evaluation
of the model's overall generalizability. We open-source a Python toolkit
(github.com/corentin-ryr/MultiMedEval) with a simple interface and setup
process, enabling the evaluation of any VLM in just a few lines of code. Our
goal is to simplify the intricate landscape of VLM evaluation, thus promoting
fair and uniform benchmarking of future models.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - WorldMedQA-V: a multilingual, multimodal medical examination dataset for multimodal language models evaluation [4.149844666297669]
Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide.
Existing datasets are largely text-only and available in a limited subset of languages and countries.
WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries.
arXiv Detail & Related papers (2024-10-16T16:31:24Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.
We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.
Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - FMBench: Benchmarking Fairness in Multimodal Large Language Models on Medical Tasks [11.094602017349928]
We propose FMBench, the first benchmark designed to evaluate the fairness of MLLMs performance across diverse demographic attributes.
We thoroughly evaluate the performance and fairness of eight state-of-the-art open-source MLLMs, including both general and medical.
All data and code will be released upon acceptance.
arXiv Detail & Related papers (2024-10-01T21:38:15Z) - VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models [89.63342806812413]
We present an open-source toolkit for evaluating large multi-modality models based on PyTorch.
VLMEvalKit implements over 70 different large multi-modality models, including both proprietary APIs and open-source models.
We host OpenVLM Leaderboard to track the progress of multi-modality learning research.
arXiv Detail & Related papers (2024-07-16T13:06:15Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z) - MvCo-DoT:Multi-View Contrastive Domain Transfer Network for Medical
Report Generation [42.804058630251305]
We propose the first multi-view medical report generation model, called MvCo-DoT.
MvCo-DoT first propose a multi-view contrastive learning (MvCo) strategy to help the deep reinforcement learning based model utilize the consistency of multi-view inputs.
Extensive experiments on the IU X-Ray public dataset show that MvCo-DoT outperforms the SOTA medical report generation baselines in all metrics.
arXiv Detail & Related papers (2023-04-15T03:42:26Z) - MELINDA: A Multimodal Dataset for Biomedical Experiment Method
Classification [14.820951153262685]
We introduce a new dataset, MELINDA, for Multimodal biomEdicaL experImeNt methoD clAssification.
The dataset is collected in a fully automated distant supervision manner, where the labels are obtained from an existing curated database.
We benchmark various state-of-the-art NLP and computer vision models, including unimodal models which only take either caption texts or images as inputs.
arXiv Detail & Related papers (2020-12-16T19:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.