GPT-4's assessment of its performance in a USMLE-based case study
- URL: http://arxiv.org/abs/2402.09654v2
- Date: Tue, 26 Mar 2024 20:12:18 GMT
- Title: GPT-4's assessment of its performance in a USMLE-based case study
- Authors: Uttam Dhakal, Aniket Kumar Singh, Suman Devkota, Yogesh Sapkota, Bishal Lamichhane, Suprinsa Paudyal, Chandra Dhakal,
- Abstract summary: This study investigates GPT-4's assessment of its performance in healthcare applications.
The questionnaire was categorized into two groups-questions with feedback (WF) and questions with no feedback(NF) post-question.
Results indicate that feedback influences relative confidence but doesn't consistently increase or decrease it.
- Score: 3.2372388230841977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates GPT-4's assessment of its performance in healthcare applications. A simple prompting technique was used to prompt the LLM with questions taken from the United States Medical Licensing Examination (USMLE) questionnaire and it was tasked to evaluate its confidence score before posing the question and after asking the question. The questionnaire was categorized into two groups-questions with feedback (WF) and questions with no feedback(NF) post-question. The model was asked to provide absolute and relative confidence scores before and after each question. The experimental findings were analyzed using statistical tools to study the variability of confidence in WF and NF groups. Additionally, a sequential analysis was conducted to observe the performance variation for the WF and NF groups. Results indicate that feedback influences relative confidence but doesn't consistently increase or decrease it. Understanding the performance of LLM is paramount in exploring its utility in sensitive areas like healthcare. This study contributes to the ongoing discourse on the reliability of AI, particularly of LLMs like GPT-4, within healthcare, offering insights into how feedback mechanisms might be optimized to enhance AI-assisted medical education and decision support.
Related papers
- Usefulness of LLMs as an Author Checklist Assistant for Scientific Papers: NeurIPS'24 Experiment [59.09144776166979]
Large language models (LLMs) represent a promising, but controversial, tool in aiding scientific peer review.
This study evaluates the usefulness of LLMs in a conference setting as a tool for vetting paper submissions against submission standards.
arXiv Detail & Related papers (2024-11-05T18:58:00Z) - Large Language Models for Patient Comments Multi-Label Classification [3.670008893193884]
This research explores leveraging Large Language Models (LLMs) in conducting Multi-label Text Classification (MLTC) of inpatient comments.
GPT-4 Turbo was leveraged to conduct the classification.
Using the prompt engineering framework, zero-shot learning, in-context learning, and chain-of-thought prompting were experimented with.
arXiv Detail & Related papers (2024-10-31T00:29:52Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Evaluating the Effectiveness of the Foundational Models for Q&A Classification in Mental Health care [0.18416014644193068]
Pre-trained Language Models (PLMs) have the potential to transform mental health support.
This study evaluates the effectiveness of PLMs for classification of Questions and Answers in the domain of mental health care.
arXiv Detail & Related papers (2024-06-23T00:11:07Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Quality of Answers of Generative Large Language Models vs Peer Patients
for Interpreting Lab Test Results for Lay Patients: Evaluation Study [5.823006266363981]
Large language models (LLMs) have opened a promising avenue for patients to get their questions answered.
We generated responses to 53 questions from four LLMs including GPT-4, Meta LLaMA 2, MedAlpaca, and ORCA_mini.
We find that GPT-4's responses are more accurate, helpful, relevant, and safer.
arXiv Detail & Related papers (2024-01-23T22:03:51Z) - Large Language Models in Medical Term Classification and Unexpected
Misalignment Between Response and Reasoning [28.355000184014084]
This study assesses the ability of state-of-the-art large language models (LLMs) to identify patients with mild cognitive impairment (MCI) from discharge summaries.
The data was partitioned into training, validation, and testing sets in a 7:2:1 ratio for model fine-tuning and evaluation.
Open-source models like Falcon and LLaMA 2 achieved high accuracy but lacked explanatory reasoning.
arXiv Detail & Related papers (2023-12-19T17:36:48Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
GPT-4V's multimodal capability for medical image analysis is evaluated.
It is found that GPT-4V excels in understanding medical images and generates high-quality radiology reports.
It is found that its performance for medical visual grounding needs to be substantially improved.
arXiv Detail & Related papers (2023-10-31T11:39:09Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
Large Language Models (LLMs) have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored.
This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests.
arXiv Detail & Related papers (2023-03-01T06:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.