MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music
- URL: http://arxiv.org/abs/2402.09871v4
- Date: Thu, 13 Jun 2024 13:36:28 GMT
- Title: MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music
- Authors: Zihao Wang, Shuyu Li, Tao Zhang, Qi Wang, Pengfei Yu, Jinyang Luo, Yan Liu, Ming Xi, Kejun Zhang,
- Abstract summary: We present MuChin, the first open-source music description benchmark in Chinese colloquial language.
MuChin is designed to evaluate the performance of multimodal Large Language Models in understanding and describing music.
All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced.
- Score: 21.380568107727207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (https://github.com/CarlWangChina/MuChin/).
Related papers
- MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models [11.834712543531756]
MuChoMusic is a benchmark for evaluating music understanding in multimodal language models focused on audio.
It comprises 1,187 multiple-choice questions, all validated by human annotators, on 644 music tracks sourced from two publicly available music datasets.
We evaluate five open-source models and identify several pitfalls, including an over-reliance on the language modality.
arXiv Detail & Related papers (2024-08-02T15:34:05Z) - MuDiT & MuSiT: Alignment with Colloquial Expression in Description-to-Song Generation [18.181382408551574]
We propose a novel task of Colloquial Description-to-Song Generation.
It focuses on aligning the generated content with colloquial human expressions.
This task is aimed at bridging the gap between colloquial language understanding and auditory expression within an AI model.
arXiv Detail & Related papers (2024-07-03T15:12:36Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
We explore the application of Large Language Models (LLMs) to the pre-training of music.
To address the challenges associated with misaligned measures from different tracks during generation, we propose a Synchronized Multi-Track ABC Notation (SMT-ABC Notation)
Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set.
arXiv Detail & Related papers (2024-04-09T15:35:52Z) - SongComposer: A Large Language Model for Lyric and Melody Composition in
Song Generation [88.33522730306674]
SongComposer could understand and generate melodies and lyrics in symbolic song representations.
We resort to symbolic song representation, the mature and efficient way humans designed for music.
With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation.
arXiv Detail & Related papers (2024-02-27T16:15:28Z) - WikiMuTe: A web-sourced dataset of semantic descriptions for music audio [7.4327407361824935]
We present WikiMuTe, a new and open dataset containing rich semantic descriptions of music.
The data is sourced from Wikipedia's rich catalogue of articles covering musical works.
We train a model that jointly learns text and audio representations and performs cross-modal retrieval.
arXiv Detail & Related papers (2023-12-14T18:38:02Z) - MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response [42.73982391253872]
MusiLingo is a novel system for music caption generation and music-related query responses.
We train it on an extensive music caption dataset and fine-tune it with instructional data.
Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs.
arXiv Detail & Related papers (2023-09-15T19:31:40Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
We introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE.
It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description.
We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines.
arXiv Detail & Related papers (2023-06-18T12:56:46Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data.
The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre.
arXiv Detail & Related papers (2022-11-21T14:15:43Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
We generate complete and semantically consistent symbolic music scores from text descriptions.
We explore the efficacy of using publicly available checkpoints for natural language processing in the task of text-to-music generation.
Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity.
arXiv Detail & Related papers (2022-11-21T07:19:17Z) - Codified audio language modeling learns useful representations for music
information retrieval [77.63657430536593]
We show that language models pre-trained on codified (discretely-encoded) music audio learn representations that are useful for downstream MIR tasks.
To determine if Jukebox's representations contain useful information for MIR, we use them as input features to train shallow models on several MIR tasks.
We observe that representations from Jukebox are considerably stronger than those from models pre-trained on tagging, suggesting that pre-training via codified audio language modeling may address blind spots in conventional approaches.
arXiv Detail & Related papers (2021-07-12T18:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.