Loopy-SLAM: Dense Neural SLAM with Loop Closures
- URL: http://arxiv.org/abs/2402.09944v2
- Date: Mon, 10 Jun 2024 15:28:53 GMT
- Title: Loopy-SLAM: Dense Neural SLAM with Loop Closures
- Authors: Lorenzo Liso, Erik Sandström, Vladimir Yugay, Luc Van Gool, Martin R. Oswald,
- Abstract summary: We introduce Loopy-SLAM that globally optimize poses and the dense 3D model.
We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition.
Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods.
- Score: 53.11936461015725
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural RGBD SLAM techniques have shown promise in dense Simultaneous Localization And Mapping (SLAM), yet face challenges such as error accumulation during camera tracking resulting in distorted maps. In response, we introduce Loopy-SLAM that globally optimizes poses and the dense 3D model. We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition. Robust pose graph optimization is used to rigidly align the local submaps. As our representation is point based, map corrections can be performed efficiently without the need to store the entire history of input frames used for mapping as typically required by methods employing a grid based mapping structure. Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods. Project page: notchla.github.io/Loopy-SLAM.
Related papers
- LoopSplat: Loop Closure by Registering 3D Gaussian Splats [21.93501886249626]
LoopSplat takes RGB-D images as input and performs dense mapping with 3DGS submaps and frame-to-model tracking.
LoopSplat triggers loop closure online and computes relative loop edge constraints between submaps directly via 3DGS registration.
arXiv Detail & Related papers (2024-08-19T17:04:18Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - GlORIE-SLAM: Globally Optimized RGB-only Implicit Encoding Point Cloud SLAM [53.6402869027093]
We propose an efficient RGB-only dense SLAM system using a flexible neural point cloud representation scene.
We also introduce a novel DSPO layer for bundle adjustment which optimize the pose and depth of implicits along with the scale of the monocular depth.
arXiv Detail & Related papers (2024-03-28T16:32:06Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - HI-SLAM: Monocular Real-time Dense Mapping with Hybrid Implicit Fields [11.627951040865568]
Recent neural mapping frameworks show promising results, but rely on RGB-D or pose inputs, or cannot run in real-time.
Our approach integrates dense-SLAM with neural implicit fields.
For efficient construction of neural fields, we employ multi-resolution grid encoding and signed distance function.
arXiv Detail & Related papers (2023-10-07T12:26:56Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - GO-SLAM: Global Optimization for Consistent 3D Instant Reconstruction [45.49960166785063]
GO-SLAM is a deep-learning-based dense visual SLAM framework globally optimizing poses and 3D reconstruction in real-time.
Results on various synthetic and real-world datasets demonstrate that GO-SLAM outperforms state-of-the-art approaches at tracking robustness and reconstruction accuracy.
arXiv Detail & Related papers (2023-09-05T17:59:58Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
We propose a dense neural simultaneous localization and mapping (SLAM) approach for monocular RGBD input.
We demonstrate that both tracking and mapping can be performed with the same point-based neural scene representation.
arXiv Detail & Related papers (2023-04-09T16:48:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.