Zero-Shot Reasoning: Personalized Content Generation Without the Cold Start Problem
- URL: http://arxiv.org/abs/2402.10133v2
- Date: Fri, 28 Jun 2024 10:41:02 GMT
- Title: Zero-Shot Reasoning: Personalized Content Generation Without the Cold Start Problem
- Authors: Davor Hafnar, Jure Demšar,
- Abstract summary: This paper presents a novel approach to achieving personalization by using large language models.
We propose levels based on the gameplay data continuously collected from individual players.
Our method has proven viable in a production setting and outperformed levels generated by traditional methods in the probability that a player will not quit the game mid-level.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Procedural content generation uses algorithmic techniques to create large amounts of new content for games at much lower production costs. In newer approaches, procedural content generation utilizes machine learning. However, these methods usually require expensive collection of large amounts of data, as well as the development and training of fairly complex learning models, which can be both extremely time-consuming and expensive. The core of our research is to explore whether we can lower the barrier to the use of personalized procedural content generation through a more practical and generalizable approach with large language models. Matching game content with player preferences benefits both players, who enjoy the game more, and developers, who increasingly depend on players enjoying the game before being able to monetize it. Therefore, this paper presents a novel approach to achieving personalization by using large language models to propose levels based on the gameplay data continuously collected from individual players. We compared the levels generated using our approach with levels generated with more traditional procedural generation techniques. Our easily reproducible method has proven viable in a production setting and outperformed levels generated by traditional methods in the probability that a player will not quit the game mid-level.
Related papers
- Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Audio-Driven Dubbing for User Generated Contents via Style-Aware
Semi-Parametric Synthesis [123.11530365315677]
Existing automated dubbing methods are usually designed for Professionally Generated Content (PGC) production.
In this paper, we investigate an audio-driven dubbing method that is more feasible for User Generated Content (UGC) production.
arXiv Detail & Related papers (2023-08-31T15:41:40Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
We propose a novel transfer learning framework which updates only $0.3%$ of model parameters to learn style specific attributes for response generation.
We learn style specific attributes from the PERSONALITY-CAPTIONS dataset.
arXiv Detail & Related papers (2022-10-07T00:09:22Z) - Combining Evolutionary Search with Behaviour Cloning for Procedurally
Generated Content [2.7412662946127755]
We consider the problem of procedural content generation for video game levels.
Prior approaches have relied on evolutionary search (ES) methods capable of generating diverse levels.
We propose a framework to tackle the procedural content generation problem that combines the best of ES and RL.
arXiv Detail & Related papers (2022-07-29T16:25:52Z) - Procedural Content Generation using Neuroevolution and Novelty Search
for Diverse Video Game Levels [2.320417845168326]
Procedurally generated video game content has the potential to drastically reduce the content creation budget of game developers and large studios.
However, adoption is hindered by limitations such as slow generation, as well as low quality and diversity of content.
We introduce an evolutionary search-based approach for evolving level generators using novelty search to procedurally generate diverse levels in real time.
arXiv Detail & Related papers (2022-04-14T12:54:32Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - Deep Learning for Procedural Content Generation [14.533560910477693]
A research field centered on content generation in games has existed for more than a decade.
Deep learning has powered a remarkable range of inventions in content production.
This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly.
arXiv Detail & Related papers (2020-10-09T13:08:37Z) - Predicting Game Difficulty and Churn Without Players [0.0]
We propose a novel simulation model that is able to predict the per-level churn and pass rates of Angry Birds Dream Blast.
Our work demonstrates that player behavior predictions produced by DRL gameplay can be significantly improved by even a very simple population-level simulation of individual player differences.
arXiv Detail & Related papers (2020-08-29T08:37:47Z) - Learning to Generate Levels From Nothing [5.2508303190856624]
We propose Generative Playing Networks which design levels for itself to play.
The algorithm is built in two parts; an agent that learns to play game levels, and a generator that learns the distribution of playable levels.
We demonstrate the capability of this framework by training an agent and level generator for a 2D dungeon crawler game.
arXiv Detail & Related papers (2020-02-12T22:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.