TOAD: Task-Oriented Automatic Dialogs with Diverse Response Styles
- URL: http://arxiv.org/abs/2402.10137v3
- Date: Thu, 6 Jun 2024 20:18:11 GMT
- Title: TOAD: Task-Oriented Automatic Dialogs with Diverse Response Styles
- Authors: Yinhong Liu, Yimai Fang, David Vandyke, Nigel Collier,
- Abstract summary: We introduce Task-Oriented Automatic Dialogs (TOAD), a novel and scalable TOD dataset.
The TOAD dataset simulates realistic app context interaction and provides a variety of system response style options.
We benchmark TOAD on two response generation tasks, and the results show that modeling more verbose responses or responses without user expression mirroring is more challenging.
- Score: 27.05310753976961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In light of recent advances in large language models (LLMs), the expectations for the next generation of virtual assistants include enhanced naturalness and adaptability across diverse usage scenarios. However, the creation of high-quality annotated data for Task-Oriented Dialog (TOD) is recognized to be slow and costly. To address these challenges, we introduce Task-Oriented Automatic Dialogs (TOAD), a novel and scalable TOD dataset along with its automatic generation pipeline. The TOAD dataset simulates realistic app context interaction and provide a variety of system response style options. Two aspects of system response styles are considered, verbosity level and users' expression mirroring. We benchmark TOAD on two response generation tasks, and the results show that modeling more verbose responses or responses without user expression mirroring is more challenging.
Related papers
- Efficient Data Generation for Source-grounded Information-seeking Dialogs: A Use Case for Meeting Transcripts [10.829227084902428]
We investigate the feasibility and effectiveness of Large Language Models (LLMs)-based data generation in source-grounded information-seeking dialogs.
We create MISeD -- Meeting Information Seeking Dialogs dataset -- a dataset of information-seeking dialogs focused on meeting transcripts.
Finetuning on MISeD gives comparable response generation quality to finetuning on fully manual data, while improving attribution quality and reducing time and effort.
arXiv Detail & Related papers (2024-05-02T09:35:06Z) - Simulating Task-Oriented Dialogues with State Transition Graphs and Large Language Models [16.94819621353007]
SynTOD is a new synthetic data generation approach for developing end-to-end Task-Oriented Dialogue (TOD) systems.
It generates diverse, structured conversations through random walks and response simulation using large language models.
In our experiments, using graph-guided response simulations leads to significant improvements in intent classification, slot filling and response relevance.
arXiv Detail & Related papers (2024-04-23T06:23:34Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
We introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment.
We propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques.
arXiv Detail & Related papers (2024-02-23T02:18:12Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - Task-Optimized Adapters for an End-to-End Task-Oriented Dialogue System [0.0]
We propose an End-to-end TOD system with Task-d Adapters which learn independently per task, adding only small number of parameters after fixed layers of pre-trained network.
Our method is a model-agnostic approach and does not require prompt-tuning as only input data without a prompt.
arXiv Detail & Related papers (2023-05-04T00:17:49Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be critical issues in building a task-oriented dialogue system.
We propose a novel manual-guided dialogue scheme, where the agent learns the tasks from both dialogue and manuals.
Our proposed scheme reduces the dependence of dialogue models on fine-grained domain ontology, and makes them more flexible to adapt to various domains.
arXiv Detail & Related papers (2022-08-16T08:21:12Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - Database Search Results Disambiguation for Task-Oriented Dialog Systems [37.36255492341847]
We propose Database Search Result (DSR) Disambiguation, a novel task that focuses on disambiguating database search results.
To study this task, we augment the popular task-oriented dialog datasets (MultiWOZ and SGD) with turns that resolve ambiguities by (a) synthetically generating turns through a pre-defined grammar, and (b) collecting human paraphrases for a subset.
We find that training on our augmented dialog data improves the model's ability to deal with ambiguous scenarios, without sacrificing performance on unmodified turns.
arXiv Detail & Related papers (2021-12-15T18:56:18Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
In multi-turn dialog, utterances do not always take the full form of sentences.
We propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question.
arXiv Detail & Related papers (2020-12-14T10:58:01Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.