RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data
- URL: http://arxiv.org/abs/2402.10487v4
- Date: Wed, 12 Jun 2024 08:49:48 GMT
- Title: RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data
- Authors: Chin-Chia Michael Yeh, Yujie Fan, Xin Dai, Uday Singh Saini, Vivian Lai, Prince Osei Aboagye, Junpeng Wang, Huiyuan Chen, Yan Zheng, Zhongfang Zhuang, Liang Wang, Wei Zhang,
- Abstract summary: We propose a all-Multi-Layer Perceptron (all-MLP) time series forecasting architecture called RPMixer.
Our method capitalizes on the ensemble-like behavior of deep neural networks, where each individual block behaves like a base learner in an ensemble model.
- Score: 33.0546525587517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal forecasting systems play a crucial role in addressing numerous real-world challenges. In this paper, we investigate the potential of addressing spatial-temporal forecasting problems using general time series forecasting models, i.e., models that do not leverage the spatial relationships among the nodes. We propose a all-Multi-Layer Perceptron (all-MLP) time series forecasting architecture called RPMixer. The all-MLP architecture was chosen due to its recent success in time series forecasting benchmarks. Furthermore, our method capitalizes on the ensemble-like behavior of deep neural networks, where each individual block within the network behaves like a base learner in an ensemble model, particularly when identity mapping residual connections are incorporated. By integrating random projection layers into our model, we increase the diversity among the blocks' outputs, thereby improving the overall performance of the network. Extensive experiments conducted on the largest spatial-temporal forecasting benchmark datasets demonstrate that the proposed method outperforms alternative methods, including both spatial-temporal graph models and general forecasting models.
Related papers
- SAGDFN: A Scalable Adaptive Graph Diffusion Forecasting Network for Multivariate Time Series Forecasting [19.111041921060366]
We present a scalable Adaptive Graph Diffusion Forecasting Network (SAGDFN) to capture complex spatial-temporal correlation.
SAGDFN is scalable to datasets of thousands of nodes without the need of prior knowledge of spatial correlation.
It achieves comparable performance with state-of-the-art baselines on one real-world dataset of 207 nodes and outperforms all state-of-the-art baselines by a significant margin on three real-world datasets of 2000 nodes.
arXiv Detail & Related papers (2024-06-18T05:19:51Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Context Neural Networks: A Scalable Multivariate Model for Time Series Forecasting [5.5711773076846365]
Real-world time series often exhibit complex interdependencies that cannot be captured in isolation.
This paper introduces the Context Neural Network, an efficient linear complexity approach for augmenting time series models with relevant contextual insights.
arXiv Detail & Related papers (2024-05-12T00:21:57Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Temporal-Spatial dependencies ENhanced deep learning model (TSEN) for
household leverage series forecasting [12.727583657383073]
Analyzing both temporal and spatial patterns for an accurate forecasting model for financial time series forecasting is a challenge.
Inspired by the successful applications of deep learning, we propose a new model to resolve the issues of forecasting household leverage in China.
Results show that the new approach can capture the temporal-spatial dynamics of household leverage well and get more accurate and solid predictive results.
arXiv Detail & Related papers (2022-10-17T00:10:25Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.