AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators
- URL: http://arxiv.org/abs/2402.11073v3
- Date: Sun, 2 Jun 2024 18:35:25 GMT
- Title: AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators
- Authors: Jingwei Ni, Minjing Shi, Dominik Stammbach, Mrinmaya Sachan, Elliott Ash, Markus Leippold,
- Abstract summary: AFaCTA is a novel framework that assists in the annotation of factual claims.
AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths.
Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
- Score: 38.523194864405326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
Related papers
- FactLens: Benchmarking Fine-Grained Fact Verification [6.814173254027381]
We advocate for a shift toward fine-grained verification, where complex claims are broken down into smaller sub-claims for individual verification.
We introduce FactLens, a benchmark for evaluating fine-grained fact verification, with metrics and automated evaluators of sub-claim quality.
Our results show alignment between automated FactLens evaluators and human judgments, and we discuss the impact of sub-claim characteristics on the overall verification performance.
arXiv Detail & Related papers (2024-11-08T21:26:57Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - Claim Check-Worthiness Detection: How Well do LLMs Grasp Annotation Guidelines? [0.0]
We use zero- and few-shot LLM prompting to identify text segments requiring fact-checking.
We evaluate the LLMs' predictive and calibration accuracy on five CD/CW datasets from diverse domains.
Our results show that optimal prompt verbosity is domain-dependent, adding context does not improve performance.
arXiv Detail & Related papers (2024-04-18T13:31:05Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization (aka ClaimNorm) aims to decompose complex and noisy social media posts into more straightforward and understandable forms.
We propose CACN, a pioneering approach that leverages chain-of-thought and claim check-worthiness estimation.
Our experiments demonstrate that CACN outperforms several baselines across various evaluation measures.
arXiv Detail & Related papers (2023-10-22T16:07:06Z) - Unsupervised Pretraining for Fact Verification by Language Model
Distillation [4.504050940874427]
We propose SFAVEL (Self-supervised Fact Verification via Language Model Distillation), a novel unsupervised pretraining framework.
It distils self-supervised features into high-quality claim-fact alignments without the need for annotations.
This is enabled by a novel contrastive loss function that encourages features to attain high-quality claim and evidence alignments.
arXiv Detail & Related papers (2023-09-28T15:53:44Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
Large language models (LLMs) encode parametric knowledge about world facts.
Their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks.
We assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention.
arXiv Detail & Related papers (2023-03-20T17:54:58Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.