Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients
- URL: http://arxiv.org/abs/2402.11198v1
- Date: Sat, 17 Feb 2024 05:22:46 GMT
- Title: Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients
- Authors: Xiaolu Wang, Zijian Li, Shi Jin, Jun Zhang
- Abstract summary: Federated learning (FL) aims to learn a common global model without exchanging or transferring the data that are stored locally at different clients.
In this paper, we propose an efficient federated learning (AFL) framework called DeFedAvg.
DeFedAvg is the first AFL algorithm that achieves the desirable linear speedup property, which indicates its high scalability.
- Score: 30.135431295658343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging distributed training paradigm that
aims to learn a common global model without exchanging or transferring the data
that are stored locally at different clients. The Federated Averaging
(FedAvg)-based algorithms have gained substantial popularity in FL to reduce
the communication overhead, where each client conducts multiple localized
iterations before communicating with a central server. In this paper, we focus
on FL where the clients have diverse computation and/or communication
capabilities. Under this circumstance, FedAvg can be less efficient since it
requires all clients that participate in the global aggregation in a round to
initiate iterations from the latest global model, and thus the synchronization
among fast clients and straggler clients can severely slow down the overall
training process. To address this issue, we propose an efficient asynchronous
federated learning (AFL) framework called Delayed Federated Averaging
(DeFedAvg). In DeFedAvg, the clients are allowed to perform local training with
different stale global models at their own paces. Theoretical analyses
demonstrate that DeFedAvg achieves asymptotic convergence rates that are on par
with the results of FedAvg for solving nonconvex problems. More importantly,
DeFedAvg is the first AFL algorithm that provably achieves the desirable linear
speedup property, which indicates its high scalability. Additionally, we carry
out extensive numerical experiments using real datasets to validate the
efficiency and scalability of our approach when training deep neural networks.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
Multiple clients collaboratively train one global model without sharing their semantic parsing data.
Lorar adjusts each client's contribution to the global model update based on its training loss reduction during each round.
Clients with smaller datasets enjoy larger performance gains.
arXiv Detail & Related papers (2023-05-26T19:25:49Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - Over-The-Air Federated Learning under Byzantine Attacks [43.67333971183711]
Federated learning (FL) is a promising solution to enable many AI applications.
FL allows the clients to participate in the training phase, governed by a central server, without sharing their local data.
One of the main challenges of FL is the communication overhead.
We propose a transmission and aggregation framework to reduce the effect of such attacks.
arXiv Detail & Related papers (2022-05-05T22:09:21Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Distributed Non-Convex Optimization with Sublinear Speedup under
Intermittent Client Availability [46.85205907718874]
Federated learning is a new machine learning framework, where a bunch of clients collaboratively train a model without sharing training data.
In this work, we consider a practical and issue when deploying federated learning in intermittent mobile environments.
We propose a simple distributed nonlinear optimization algorithm, called Federated Latest Averaging (FedLaAvg for short)
Our theoretical analysis shows that FedLaAvg attains the convergence rate of $(E1/2/(NT1/2)$, achieving a sublinear speed with respect to the total number of clients.
arXiv Detail & Related papers (2020-02-18T06:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.