OneBit: Towards Extremely Low-bit Large Language Models
- URL: http://arxiv.org/abs/2402.11295v5
- Date: Mon, 04 Nov 2024 12:55:44 GMT
- Title: OneBit: Towards Extremely Low-bit Large Language Models
- Authors: Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, Wanxiang Che,
- Abstract summary: This paper boldly quantizes the weight matrices of LLMs to 1-bit, paving the way for the extremely low bit-width deployment of LLMs.
Experiments indicate that OneBit achieves good performance (at least 81% of the non-quantized performance on LLaMA models) with robust training processes.
- Score: 66.29839811207617
- License:
- Abstract: Model quantification uses low bit-width values to represent the weight matrices of existing models to be quantized, which is a promising approach to reduce both storage and computational overheads of deploying highly anticipated LLMs. However, current quantization methods suffer severe performance degradation when the bit-width is extremely reduced, and thus focus on utilizing 4-bit or 8-bit values to quantize models. This paper boldly quantizes the weight matrices of LLMs to 1-bit, paving the way for the extremely low bit-width deployment of LLMs. For this target, we introduce a 1-bit model compressing framework named OneBit, including a novel 1-bit parameter representation method to better quantize LLMs as well as an effective parameter initialization method based on matrix decomposition to improve the convergence speed of the quantization framework. Sufficient experimental results indicate that OneBit achieves good performance (at least 81% of the non-quantized performance on LLaMA models) with robust training processes when only using 1-bit weight matrices.
Related papers
- CLAQ: Pushing the Limits of Low-Bit Post-Training Quantization for LLMs [44.03692512352445]
Column-Level Adaptive weight Quantization (CLAQ) is a novel and effective framework for Large Language Models (LLMs) quantization.
In this paper, we present a novel and effective CLAQ framework by introducing three different types of adaptive strategies for LLM quantization.
Experiments on various mainstream open source LLMs including LLaMA-1, LLaMA-2 and Yi demonstrate that our methods achieve the state-of-the-art results across different bit settings.
arXiv Detail & Related papers (2024-05-27T14:49:39Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
Large language models (LLMs) have significantly advanced the field of natural language processing.
Existing ultra-low-bit quantization always causes severe accuracy drops.
We propose a novel Dual-Binarization method for LLMs, namely DB-LLM.
arXiv Detail & Related papers (2024-02-19T09:04:30Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning [66.85589263870702]
Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component.
Experiments on finetuning RoBERTa and LLaMA-2 demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines.
arXiv Detail & Related papers (2023-11-20T18:57:41Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.