Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
- URL: http://arxiv.org/abs/2402.11414v2
- Date: Mon, 21 Oct 2024 20:58:43 GMT
- Title: Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
- Authors: Yue Zhang, Jingxuan Zuo, Liqiang Jing,
- Abstract summary: Multimodal summarization aims to generate a concise summary based on the input text and image.
To evaluate the factuality of multimodal summarization models, we propose two fine-grained and explainable evaluation frameworks.
- Score: 13.736656652049884
- License:
- Abstract: Multimodal summarization aims to generate a concise summary based on the input text and image. However, the existing methods potentially suffer from unfactual output. To evaluate the factuality of multimodal summarization models, we propose two fine-grained and explainable evaluation frameworks (FALLACIOUS) for different application scenarios, i.e. reference-based factuality evaluation framework and reference-free factuality evaluation framework. Notably, the reference-free factuality evaluation framework doesn't need ground truth and hence it has a wider application scenario. To evaluate the effectiveness of the proposed frameworks, we compute the correlation between our frameworks and the other metrics. The experimental results show the effectiveness of our proposed method. We will release our code and dataset via github.
Related papers
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Improving the Validity and Practical Usefulness of AI/ML Evaluations Using an Estimands Framework [2.4861619769660637]
We propose an estimands framework adapted from international clinical trials guidelines.
This framework provides a systematic structure for inference and reporting in evaluations.
We demonstrate how the framework can help uncover underlying issues, their causes, and potential solutions.
arXiv Detail & Related papers (2024-06-14T18:47:37Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
generative Large Language Models (LLMs) have been remarkable, however, the quality of the text generated by these models often reveals persistent issues.
We propose the MATEval: A "Multi-Agent Text Evaluation framework"
Our framework incorporates self-reflection and Chain-of-Thought strategies, along with feedback mechanisms, to enhance the depth and breadth of the evaluation process.
arXiv Detail & Related papers (2024-03-28T10:41:47Z) - CheckEval: Robust Evaluation Framework using Large Language Model via Checklist [6.713203569074019]
We introduce CheckEval, a novel evaluation framework using Large Language Models.
CheckEval addresses the challenges of ambiguity and inconsistency in current evaluation methods.
arXiv Detail & Related papers (2024-03-27T17:20:39Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
We propose Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction (FENICE)
FENICE leverages an NLI-based alignment between information in the source document and a set of atomic facts, referred to as claims, extracted from the summary.
Our metric sets a new state of the art on AGGREFACT, the de-facto benchmark for factuality evaluation.
arXiv Detail & Related papers (2024-03-04T17:57:18Z) - End-to-End Evaluation for Low-Latency Simultaneous Speech Translation [55.525125193856084]
We propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions.
This includes the segmentation of the audio as well as the run-time of the different components.
We also compare different approaches to low-latency speech translation using this framework.
arXiv Detail & Related papers (2023-08-07T09:06:20Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models.
arXiv Detail & Related papers (2023-03-21T14:24:58Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
We propose CLIPBERTScore to leverage the robustness and strong factuality detection performance between image-summary and document-summary.
We show that this simple combination of two metrics in the zero-shot achieves higher correlations than existing factuality metrics for document summarization.
Our analysis demonstrates the robustness and high correlation of CLIPBERTScore and its components on four factuality metric-evaluation benchmarks.
arXiv Detail & Related papers (2022-11-04T16:50:40Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We also propose a post-processing smoothing step that significantly improves the performance of some attribution methods.
arXiv Detail & Related papers (2022-05-20T20:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.