Verifiably Following Complex Robot Instructions with Foundation Models
- URL: http://arxiv.org/abs/2402.11498v2
- Date: Mon, 8 Jul 2024 16:38:57 GMT
- Title: Verifiably Following Complex Robot Instructions with Foundation Models
- Authors: Benedict Quartey, Eric Rosen, Stefanie Tellex, George Konidaris,
- Abstract summary: People want to flexibly express constraints, refer to arbitrary landmarks and verify when instructing robots.
We propose Language Instruction grounding for Motion Planning (LIM), an approach that enables robots to verifiably follow expressive and complex open-ended instructions.
LIM constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended.
- Score: 16.564788361518197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling mobile robots to follow complex natural language instructions is an important yet challenging problem. People want to flexibly express constraints, refer to arbitrary landmarks and verify behavior when instructing robots. Conversely, robots must disambiguate human instructions into specifications and ground instruction referents in the real world. We propose Language Instruction grounding for Motion Planning (LIMP), an approach that enables robots to verifiably follow expressive and complex open-ended instructions in real-world environments without prebuilt semantic maps. LIMP constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of robot behaviors that are correct-by-construction. We perform a large scale evaluation and demonstrate our approach on 150 instructions in five real-world environments showing the generality of our approach and the ease of deployment in novel unstructured domains. In our experiments, LIMP performs comparably with state-of-the-art LLM task planners and LLM code-writing planners on standard open vocabulary tasks and additionally achieves 79\% success rate on complex spatiotemporal instructions while LLM and Code-writing planners both achieve 38\%. See supplementary materials and demo videos at https://robotlimp.github.io
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction
Execution for Robots [9.393951367344894]
This work explores the capacity of large language models to address problems at the intersection of spatial planning and natural language interfaces for navigation.
We focus on following complex instructions that are more akin to natural conversation than traditional explicit procedural directives typically seen in robotics.
We leverage the 3D simulator AI2Thor to create household query scenarios at scale, and augment it by adding complex language queries for 40 object types.
arXiv Detail & Related papers (2023-07-21T19:09:37Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Act is a framework that maps multi-modal instructions to sequential actions for robotic manipulation tasks.
Our approach is adjustable and flexible in accommodating various instruction modalities and input types.
Our zero-shot method outperformed many state-of-the-art learning-based policies in several tasks.
arXiv Detail & Related papers (2023-05-18T17:59:49Z) - SEAL: Semantic Frame Execution And Localization for Perceiving Afforded
Robot Actions [5.522839151632667]
We extend the semantic frame representation for robot manipulation actions and introduce the problem of Semantic Frame Execution And Localization for Perceiving Afforded Robot Actions (SEAL) as a graphical model.
For the SEAL problem, we describe our nonparametric Semantic Frame Mapping (SeFM) algorithm for maintaining belief over a finite set of semantic frames as the locations of actions afforded to the robot.
arXiv Detail & Related papers (2023-03-24T15:25:41Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.