Large Language Model-driven Meta-structure Discovery in Heterogeneous Information Network
- URL: http://arxiv.org/abs/2402.11518v2
- Date: Sat, 22 Jun 2024 04:03:30 GMT
- Title: Large Language Model-driven Meta-structure Discovery in Heterogeneous Information Network
- Authors: Lin Chen, Fengli Xu, Nian Li, Zhenyu Han, Meng Wang, Yong Li, Pan Hui,
- Abstract summary: We propose ReStruct, a meta-structure search framework that integrates reasoning into the evolutionary procedure.
We show that ReStruct achieves state-of-the-art performance in both recommendation and node classification tasks.
- Score: 29.149367323751413
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heterogeneous information networks (HIN) have gained increasing popularity in recent years for capturing complex relations between diverse types of nodes. Meta-structures are proposed as a useful tool to identify the important patterns in HINs, but hand-crafted meta-structures pose significant challenges for scaling up, drawing wide research attention towards developing automatic search algorithms. Previous efforts primarily focused on searching for meta-structures with good empirical performance, overlooking the importance of human comprehensibility and generalizability. To address this challenge, we draw inspiration from the emergent reasoning abilities of large language models (LLMs). We propose ReStruct, a meta-structure search framework that integrates LLM reasoning into the evolutionary procedure. ReStruct uses a grammar translator to encode the meta-structures into natural language sentences, and leverages the reasoning power of LLMs to evaluate their semantic feasibility. Besides, ReStruct also employs performance-oriented evolutionary operations. These two competing forces allow ReStruct to jointly optimize the semantic explainability and empirical performance of meta-structures. Furthermore, ReStruct contains a differential LLM explainer to generate and refine natural language explanations for the discovered meta-structures by reasoning through the search history. Experiments on eight representative HIN datasets demonstrate that ReStruct achieves state-of-the-art performance in both recommendation and node classification tasks. Moreover, a survey study involving 73 graduate students shows that the discovered meta-structures and generated explanations by ReStruct are substantially more comprehensible. Our code and questionnaire are available at https://github.com/LinChen-65/ReStruct.
Related papers
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models [30.09120709652445]
This paper is centred around a focused study: whether the current state-of-the-art generalist LLMs can leverage the structures in a few examples to better construct the proof structures with textitin-context learning.
arXiv Detail & Related papers (2024-10-11T00:45:50Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
Struct-X operates through five key phases: read-model-fill-reflect-reason''
It encodes structured data into a topological space using graph embeddings.
It fills in missing entity information with knowledge retrieval modules.
The final phase involves constructing a topological network with selected tokens.
arXiv Detail & Related papers (2024-07-17T13:06:25Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - LasUIE: Unifying Information Extraction with Latent Adaptive
Structure-aware Generative Language Model [96.889634747943]
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential.
We propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE.
Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system.
arXiv Detail & Related papers (2023-04-13T04:01:14Z) - Unifying Structure Reasoning and Language Model Pre-training for Complex
Reasoning [26.811507121199323]
This paper proposes a unified learning framework that combines explicit structure reasoning and language pre-training to endow PLMs with the structure reasoning skill.
It first identifies several elementary structures within contexts to construct structured queries and performs step-by-step reasoning along the queries to identify the answer entity.
Experimental results on four datasets demonstrate that the proposed model achieves significant improvements in complex reasoning tasks involving diverse structures.
arXiv Detail & Related papers (2023-01-21T08:18:11Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.