Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling
- URL: http://arxiv.org/abs/2402.11800v3
- Date: Wed, 27 Mar 2024 15:48:29 GMT
- Title: Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling
- Authors: Arman Adibi, Nicolo Dal Fabbro, Luca Schenato, Sanjeev Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra,
- Abstract summary: We study the non-asymptotic performance of approximation schemes with delayed updates under Markovian sampling.
Our theoretical findings shed light on the finite-time effects of delays for a broad class of algorithms.
- Score: 73.5602474095954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by applications in large-scale and multi-agent reinforcement learning, we study the non-asymptotic performance of stochastic approximation (SA) schemes with delayed updates under Markovian sampling. While the effect of delays has been extensively studied for optimization, the manner in which they interact with the underlying Markov process to shape the finite-time performance of SA remains poorly understood. In this context, our first main contribution is to show that under time-varying bounded delays, the delayed SA update rule guarantees exponentially fast convergence of the \emph{last iterate} to a ball around the SA operator's fixed point. Notably, our bound is \emph{tight} in its dependence on both the maximum delay $\tau_{max}$, and the mixing time $\tau_{mix}$. To achieve this tight bound, we develop a novel inductive proof technique that, unlike various existing delayed-optimization analyses, relies on establishing uniform boundedness of the iterates. As such, our proof may be of independent interest. Next, to mitigate the impact of the maximum delay on the convergence rate, we provide the first finite-time analysis of a delay-adaptive SA scheme under Markovian sampling. In particular, we show that the exponent of convergence of this scheme gets scaled down by $\tau_{avg}$, as opposed to $\tau_{max}$ for the vanilla delayed SA rule; here, $\tau_{avg}$ denotes the average delay across all iterations. Moreover, the adaptive scheme requires no prior knowledge of the delay sequence for step-size tuning. Our theoretical findings shed light on the finite-time effects of delays for a broad class of algorithms, including TD learning, Q-learning, and stochastic gradient descent under Markovian sampling.
Related papers
- Tree Search-Based Policy Optimization under Stochastic Execution Delay [46.849634120584646]
Delayed execution MDPs are a new formalism addressing random delays without resorting to state augmentation.
We show that given observed delay values, it is sufficient to perform a policy search in the class of Markov policies.
We devise DEZ, a model-based algorithm that optimize over the class of Markov policies.
arXiv Detail & Related papers (2024-04-08T12:19:04Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Posterior Sampling with Delayed Feedback for Reinforcement Learning with
Linear Function Approximation [62.969796245827006]
Delayed-PSVI is an optimistic value-based algorithm that explores the value function space via noise perturbation with posterior sampling.
We show our algorithm achieves $widetildeO(sqrtd3H3 T + d2H2 E[tau]$ worst-case regret in the presence of unknown delays.
We incorporate a gradient-based approximate sampling scheme via Langevin dynamics for Delayed-LPSVI.
arXiv Detail & Related papers (2023-10-29T06:12:43Z) - Towards Understanding the Generalizability of Delayed Stochastic
Gradient Descent [63.43247232708004]
A gradient descent performed in an asynchronous manner plays a crucial role in training large-scale machine learning models.
Existing generalization error bounds are rather pessimistic and cannot reveal the correlation between asynchronous delays and generalization.
Our theoretical results indicate that asynchronous delays reduce the generalization error of the delayed SGD algorithm.
arXiv Detail & Related papers (2023-08-18T10:00:27Z) - Min-Max Optimization under Delays [26.830212508878162]
Delays and asynchrony are inevitable in large-scale machine-learning problems.
No analogous theory is available for min-max optimization.
We show that even small delays can cause prominent algorithms like Extra-gradient to diverge.
arXiv Detail & Related papers (2023-07-13T16:39:01Z) - Non-stationary Online Convex Optimization with Arbitrary Delays [50.46856739179311]
This paper investigates the delayed online convex optimization (OCO) in non-stationary environments.
We first propose a simple algorithm, namely DOGD, which performs a gradient descent step for each delayed gradient according to their arrival order.
We develop an improved algorithm, which reduces those dynamic regret bounds achieved by DOGD to $O(sqrtbardT(P_T+1))$.
arXiv Detail & Related papers (2023-05-20T07:54:07Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Adapting to Delays and Data in Adversarial Multi-Armed Bandits [7.310043452300736]
We analyze variants of the Exp3 algorithm that tune their step-size using only information available at the time of the decisions.
We obtain regret guarantees that adapt to the observed (rather than the worst-case) sequences of delays and/or losses.
arXiv Detail & Related papers (2020-10-12T20:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.