Discerning and Resolving Knowledge Conflicts through Adaptive Decoding with Contextual Information-Entropy Constraint
- URL: http://arxiv.org/abs/2402.11893v3
- Date: Fri, 26 Jul 2024 10:00:52 GMT
- Title: Discerning and Resolving Knowledge Conflicts through Adaptive Decoding with Contextual Information-Entropy Constraint
- Authors: Xiaowei Yuan, Zhao Yang, Yequan Wang, Shengping Liu, Jun Zhao, Kang Liu,
- Abstract summary: We propose an adaptive decoding method to discern whether the knowledge conflicts occur and resolve them.
Experiments show that COIECD exhibits strong performance and robustness over knowledge conflicts in realistic datasets.
- Score: 20.543282448771336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models internalize enormous parametric knowledge during pre-training. Concurrently, realistic applications necessitate external contextual knowledge to aid models on the underlying tasks. This raises a crucial dilemma known as knowledge conflicts, where the contextual knowledge clashes with the However, existing decoding works are specialized in resolving knowledge conflicts and could inadvertently deteriorate performance in absence of conflicts. In this paper, we propose an adaptive decoding method, termed as contextual information-entropy constraint decoding (COIECD), to discern whether the knowledge conflicts occur and resolve them. It can improve the model's faithfulness to conflicting context, and simultaneously maintain high performance among non- Our experiments show that COIECD exhibits strong performance and robustness over knowledge conflicts in realistic datasets. Code is available.
Related papers
- Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models [33.76903352835436]
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs.
These models are prone to parametric knowledge conflicts, which arise from inconsistencies of represented knowledge between their vision and language components.
We present a systematic approach to detect, interpret, and mitigate them.
arXiv Detail & Related papers (2024-10-04T17:59:28Z) - AdaCAD: Adaptively Decoding to Balance Conflicts between Contextual and Parametric Knowledge [57.66282463340297]
Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters.
We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict.
arXiv Detail & Related papers (2024-09-11T16:35:18Z) - DYNAMICQA: Tracing Internal Knowledge Conflicts in Language Models [42.776896363518844]
We study the effect of intra-memory conflict on an LM's ability to accept relevant context.
We utilize two knowledge conflict measures and a novel dataset containing inherently conflicting data, DynamicQA.
We verify that LMs exhibit a greater degree of intra-memory conflict with dynamic facts compared to facts that have a single truth value.
arXiv Detail & Related papers (2024-07-24T06:06:07Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
Knowledge documents for large language models (LLMs) may conflict with the memory of LLMs due to outdated or incorrect knowledge.
We construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering.
arXiv Detail & Related papers (2024-04-04T16:40:11Z) - Cutting Off the Head Ends the Conflict: A Mechanism for Interpreting and
Mitigating Knowledge Conflicts in Language Models [18.2500350157507]
Internal memory and external context inevitably clash, leading to knowledge conflicts within language models (LMs)
We propose a novel method called PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters.
arXiv Detail & Related papers (2024-02-28T08:34:41Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Causal Discovery with Language Models as Imperfect Experts [119.22928856942292]
We consider how expert knowledge can be used to improve the data-driven identification of causal graphs.
We propose strategies for amending such expert knowledge based on consistency properties.
We report a case study, on real data, where a large language model is used as an imperfect expert.
arXiv Detail & Related papers (2023-07-05T16:01:38Z) - Leveraging Skill-to-Skill Supervision for Knowledge Tracing [13.753990664747265]
Knowledge tracing plays a pivotal role in intelligent tutoring systems.
Recent advances in knowledge tracing models have enabled better exploitation of problem solving history.
Knowledge tracing algorithms that incorporate knowledge directly are important to settings with limited data or cold starts.
arXiv Detail & Related papers (2023-06-12T03:23:22Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
Large language models (LLMs) encode parametric knowledge about world facts.
Their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks.
We assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention.
arXiv Detail & Related papers (2023-03-20T17:54:58Z) - Knowledge-Grounded Dialogue Generation with a Unified Knowledge
Representation [78.85622982191522]
Existing systems perform poorly on unseen topics due to limited topics covered in the training data.
We present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation.
It can achieve comparable performance with state-of-the-art methods under a fully-supervised setting.
arXiv Detail & Related papers (2021-12-15T07:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.