Distilling Large Language Models for Text-Attributed Graph Learning
- URL: http://arxiv.org/abs/2402.12022v1
- Date: Mon, 19 Feb 2024 10:31:53 GMT
- Title: Distilling Large Language Models for Text-Attributed Graph Learning
- Authors: Bo Pan, Zheng Zhang, Yifei Zhang, Yuntong Hu, Liang Zhao
- Abstract summary: Text-Attributed Graphs (TAGs) are graphs of connected textual documents.
Graph models can efficiently learn TAGs, but their training heavily relies on human-annotated labels.
Large language models (LLMs) have recently demonstrated remarkable capabilities in few-shot and zero-shot TAG learning.
- Score: 17.64577949081361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-Attributed Graphs (TAGs) are graphs of connected textual documents.
Graph models can efficiently learn TAGs, but their training heavily relies on
human-annotated labels, which are scarce or even unavailable in many
applications. Large language models (LLMs) have recently demonstrated
remarkable capabilities in few-shot and zero-shot TAG learning, but they suffer
from scalability, cost, and privacy issues. Therefore, in this work, we focus
on synergizing LLMs and graph models with their complementary strengths by
distilling the power of LLMs to a local graph model on TAG learning. To address
the inherent gaps between LLMs (generative models for texts) and graph models
(discriminative models for graphs), we propose first to let LLMs teach an
interpreter with rich textual rationale and then let a student model mimic the
interpreter's reasoning without LLMs' textual rationale. Extensive experiments
validate the efficacy of our proposed framework.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - GUNDAM: Aligning Large Language Models with Graph Understanding [10.080136100700692]
We introduce the textbfGraph textbfUnderstanding for textbfNatural Language textbfDriven textbfAnalytical textbfModel (model)
This model adapts LLMs to better understand and engage with the structure of graph data, enabling them to perform complex reasoning tasks by leveraging the graph's structure itself.
arXiv Detail & Related papers (2024-09-30T07:59:10Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
We conduct an in-depth review of the latest state-of-the-art Large Language Models applied in graph learning.
We introduce a novel taxonomy to categorize existing methods based on their framework design.
We explore the strengths and limitations of each framework, and emphasize potential avenues for future research.
arXiv Detail & Related papers (2024-05-10T18:05:37Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.